Python utils.load_mnist() Examples
The following are 10
code examples of utils.load_mnist().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: plot.py From adversarial-autoencoder with MIT License | 5 votes |
def plot_pca(): print('loading data') X_train, y_train, X_test, y_test = utils.load_mnist() pca = PCA(n_components=2) print('transforming training data') Z_train = pca.fit_transform(X_train) print('transforming test data') Z_test = pca.transform(X_test) plot(Z_train, y_train, Z_test, y_test, filename='pca.png', title='projected onto principle components')
Example #2
Source File: plot.py From adversarial-autoencoder with MIT License | 5 votes |
def plot_autoencoder(weightsfile): print('building model') layers = model.build_model() batch_size = 128 print('compiling theano function') encoder_func = theano_funcs.create_encoder_func(layers) print('loading weights from %s' % (weightsfile)) model.load_weights([ layers['l_decoder_out'], layers['l_discriminator_out'], ], weightsfile) print('loading data') X_train, y_train, X_test, y_test = utils.load_mnist() train_datapoints = [] print('transforming training data') for train_idx in get_batch_idx(X_train.shape[0], batch_size): X_train_batch = X_train[train_idx] train_batch_codes = encoder_func(X_train_batch) train_datapoints.append(train_batch_codes) test_datapoints = [] print('transforming test data') for test_idx in get_batch_idx(X_test.shape[0], batch_size): X_test_batch = X_test[test_idx] test_batch_codes = encoder_func(X_test_batch) test_datapoints.append(test_batch_codes) Z_train = np.vstack(train_datapoints) Z_test = np.vstack(test_datapoints) plot(Z_train, y_train, Z_test, y_test, filename='adversarial_train_val.png', title='projected onto latent space of autoencoder')
Example #3
Source File: distributed_train.py From capsule-networks with MIT License | 5 votes |
def create_inputs(): trX, trY = load_mnist(cfg.dataset, cfg.is_training) num_pre_threads = cfg.thread_per_gpu*cfg.num_gpu data_queue = tf.train.slice_input_producer([trX, trY], capacity=64*num_pre_threads) X, Y = tf.train.shuffle_batch(data_queue, num_threads=num_pre_threads, batch_size=cfg.batch_size_per_gpu*cfg.num_gpu, capacity=cfg.batch_size_per_gpu*cfg.num_gpu * 64, min_after_dequeue=cfg.batch_size_per_gpu*cfg.num_gpu * 32, allow_smaller_final_batch=False) return (X, Y)
Example #4
Source File: distributed_train.py From CapsNet-Tensorflow with Apache License 2.0 | 5 votes |
def create_inputs(): trX, trY = load_mnist(cfg.dataset, cfg.is_training) num_pre_threads = cfg.thread_per_gpu*cfg.num_gpu data_queue = tf.train.slice_input_producer([trX, trY], capacity=64*num_pre_threads) X, Y = tf.train.shuffle_batch(data_queue, num_threads=num_pre_threads, batch_size=cfg.batch_size_per_gpu*cfg.num_gpu, capacity=cfg.batch_size_per_gpu*cfg.num_gpu * 64, min_after_dequeue=cfg.batch_size_per_gpu*cfg.num_gpu * 32, allow_smaller_final_batch=False) return (X, Y)
Example #5
Source File: evaluation.py From PCANet with MIT License | 5 votes |
def run_mnist(n_train=None, n_test=None, model_type="normal"): datasize = {"n_train": n_train, "n_test": n_test} transformer_params = { "image_shape": 28, "filter_shape_l1": 5, "step_shape_l1": 1, "n_l1_output": 8, "filter_shape_l2": 5, "step_shape_l2": 1, "n_l2_output": 4, "filter_shape_pooling": 5, "step_shape_pooling": 5 } ensemble_params = { "n_estimators" : 40, "sampling_ratio" : 0.03, "n_jobs" : -1 } dataset = utils.load_mnist() run(dataset, datasize, transformer_params, ensemble_params, model_type)
Example #6
Source File: eval.py From capsule-networks with Apache License 2.0 | 4 votes |
def main(_): # Load Graph capsNet = CapsNet(is_training=False) print('[+] Graph is constructed') # Load test data teX, teY = load_mnist(conf.dataset, is_training=False) # Start session with capsNet.graph.as_default(): sv = tf.train.Supervisor(logdir=conf.logdir) with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: # Restore parameters checkpoint_path = tf.train.latest_checkpoint(conf.logdir) sv.saver.restore(sess, checkpoint_path) print('[+] Graph is restored from ' + checkpoint_path) # Make results directory if not os.path.exists('results'): os.mkdir('results') reconstruction_err = [] classification_acc = [] for i in range(10000 // conf.batch_size): start = i * conf.batch_size end = start + conf.batch_size # Reconstruction recon_imgs = sess.run(capsNet.decoded, {capsNet.x: teX[start:end]}) recon_imgs = np.reshape(recon_imgs, (conf.batch_size, -1)) orgin_imgs = np.reshape(teX[start:end], (conf.batch_size, -1)) squared = np.square(recon_imgs - orgin_imgs) reconstruction_err.append(np.mean(squared)) if i % 5 == 0: imgs = np.reshape(recon_imgs, (conf.batch_size, 28, 28, 1)) size = 6 save_images(imgs[0:size * size, :], [size, size], 'results/test_%03d.png' % i) # Classification cls_result = sess.run(capsNet.preds, {capsNet.x: teX[start:end]}) cls_answer = teY[start:end] cls_acc = np.mean(np.equal(cls_result, cls_answer).astype(np.float32)) classification_acc.append(cls_acc) # Print classification accuracy & reconstruction error print('reconstruction_err : ' + str(np.mean(reconstruction_err))) print('classification_acc : ' + str(np.mean(classification_acc) * 100))
Example #7
Source File: CGAN.py From Generative_Model_Zoo with MIT License | 4 votes |
def __init__(self, args): # parameters self.epoch = args.epoch self.sample_num = 100 self.batch_size = args.batch_size self.save_dir = args.save_dir self.result_dir = args.result_dir self.dataset = args.dataset self.log_dir = args.log_dir self.gpu_mode = args.gpu_mode self.model_name = args.gan_type # networks init self.G = generator(self.dataset) self.D = discriminator(self.dataset) self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2)) self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2)) if self.gpu_mode: self.G.cuda() self.D.cuda() self.BCE_loss = nn.BCELoss().cuda() else: self.BCE_loss = nn.BCELoss() print('---------- Networks architecture -------------') utils.print_network(self.G) utils.print_network(self.D) print('-----------------------------------------------') # load mnist self.data_X, self.data_Y = utils.load_mnist(args.dataset) self.z_dim = 62 self.y_dim = 10 # fixed noise & condition self.sample_z_ = torch.zeros((self.sample_num, self.z_dim)) for i in range(10): self.sample_z_[i*self.y_dim] = torch.rand(1, self.z_dim) for j in range(1, self.y_dim): self.sample_z_[i*self.y_dim + j] = self.sample_z_[i*self.y_dim] temp = torch.zeros((10, 1)) for i in range(self.y_dim): temp[i, 0] = i temp_y = torch.zeros((self.sample_num, 1)) for i in range(10): temp_y[i*self.y_dim: (i+1)*self.y_dim] = temp self.sample_y_ = torch.zeros((self.sample_num, self.y_dim)) self.sample_y_.scatter_(1, temp_y.type(torch.LongTensor), 1) if self.gpu_mode: self.sample_z_, self.sample_y_ = Variable(self.sample_z_.cuda(), volatile=True), Variable(self.sample_y_.cuda(), volatile=True) else: self.sample_z_, self.sample_y_ = Variable(self.sample_z_, volatile=True), Variable(self.sample_y_, volatile=True)
Example #8
Source File: ACGAN.py From Generative_Model_Zoo with MIT License | 4 votes |
def __init__(self, args): # parameters self.epoch = args.epoch self.sample_num = 100 self.batch_size = args.batch_size self.save_dir = args.save_dir self.result_dir = args.result_dir self.dataset = args.dataset self.log_dir = args.log_dir self.gpu_mode = args.gpu_mode self.model_name = args.gan_type # networks init self.G = generator(self.dataset) self.D = discriminator(self.dataset) self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2)) self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2)) if self.gpu_mode: self.G.cuda() self.D.cuda() self.BCE_loss = nn.BCELoss().cuda() self.CE_loss = nn.CrossEntropyLoss().cuda() else: self.BCE_loss = nn.BCELoss() self.CE_loss = nn.CrossEntropyLoss() print('---------- Networks architecture -------------') utils.print_network(self.G) utils.print_network(self.D) print('-----------------------------------------------') # load mnist self.data_X, self.data_Y = utils.load_mnist(args.dataset) self.z_dim = 62 self.y_dim = 10 # fixed noise & condition self.sample_z_ = torch.zeros((self.sample_num, self.z_dim)) for i in range(10): self.sample_z_[i*self.y_dim] = torch.rand(1, self.z_dim) for j in range(1, self.y_dim): self.sample_z_[i*self.y_dim + j] = self.sample_z_[i*self.y_dim] temp = torch.zeros((10, 1)) for i in range(self.y_dim): temp[i, 0] = i temp_y = torch.zeros((self.sample_num, 1)) for i in range(10): temp_y[i*self.y_dim: (i+1)*self.y_dim] = temp self.sample_y_ = torch.zeros((self.sample_num, self.y_dim)) self.sample_y_.scatter_(1, temp_y.type(torch.LongTensor), 1) if self.gpu_mode: self.sample_z_, self.sample_y_ = Variable(self.sample_z_.cuda(), volatile=True), Variable(self.sample_y_.cuda(), volatile=True) else: self.sample_z_, self.sample_y_ = Variable(self.sample_z_, volatile=True), Variable(self.sample_y_, volatile=True)
Example #9
Source File: data_iter.py From bruno with MIT License | 4 votes |
def __init__(self, seq_len, batch_size, dataset='mnist', set='train', rng=None, infinite=True, digits=None): if dataset == 'fashion_mnist': (x_train, y_train), (x_test, y_test) = utils.load_fashion_mnist() if set == 'train': self.x = x_train self.y = y_train else: self.x = x_test self.y = y_test elif dataset == 'mnist': (x_train, y_train), (x_test, y_test) = utils.load_mnist() if set == 'train': self.x = x_train self.y = y_train elif set == 'test': self.x = x_test self.y = y_test elif dataset == 'cifar10': self.x, self.y = utils.load_cifar('data/cifar', subset=set) self.x = np.transpose(self.x, (0, 2, 3, 1)) # (N,3,32,32) -> (N,32,32,3) self.x = np.float32(self.x) self.img_shape = self.x.shape[1:] self.input_dim = np.prod(self.img_shape) else: raise ValueError('wrong dataset name') if dataset == 'mnist' or dataset == 'fashion_mnist': self.input_dim = self.x.shape[-1] self.img_shape = (int(np.sqrt(self.input_dim)), int(np.sqrt(self.input_dim)), 1) self.x = np.reshape(self.x, (self.x.shape[0],) + self.img_shape) self.x = np.float32(self.x) self.classes = np.unique(self.y) self.n_classes = len(self.classes) self.y2idxs = {} self.nsamples = 0 for i in list(self.classes): self.y2idxs[i] = np.where(self.y == i)[0] self.nsamples += len(self.y2idxs[i]) self.batch_size = batch_size self.seq_len = seq_len self.rng = np.random.RandomState(42) if not rng else rng self.infinite = infinite self.digits = digits if digits is not None else np.arange(self.n_classes) print(set, 'dataset size:', self.x.shape) print(set, 'N classes', self.n_classes) print(set, 'min, max', np.min(self.x), np.max(self.x)) print(set, 'nsamples', self.nsamples) print(set, 'digits', self.digits) print('--------------')
Example #10
Source File: data_iter.py From bruno with MIT License | 4 votes |
def __init__(self, seq_len, set='train', dataset='mnist', rng=None, infinite=True, digits=None): if dataset == 'fashion_mnist': (x_train, y_train), (x_test, y_test) = utils.load_fashion_mnist() elif dataset == 'mnist': (x_train, y_train), (x_test, y_test) = utils.load_mnist() else: raise ValueError('wrong dataset name') self.x_train = x_train self.y_train = y_train self.y_train2idxs = {} for i in range(10): self.y_train2idxs[i] = np.where(self.y_train == i)[0] if set == 'train': self.x = x_train self.y = y_train else: self.x = x_test self.y = y_test self.input_dim = self.x.shape[-1] self.img_shape = (int(np.sqrt(self.input_dim)), int(np.sqrt(self.input_dim)), 1) self.x = np.reshape(self.x, (self.x.shape[0],) + self.img_shape) self.x = np.float32(self.x) self.x_train = np.reshape(self.x_train, (self.x_train.shape[0],) + self.img_shape) self.x_train = np.float32(self.x_train) self.y2idxs = {} for i in range(10): self.y2idxs[i] = np.where(self.y == i)[0] self.seq_len = seq_len self.rng = np.random.RandomState(42) if not rng else rng self.nsamples = self.x.shape[0] self.infinite = infinite self.digits = digits if digits is not None else range(10) self.n_classes = len(self.digits) self.batch_size = self.n_classes self.set = set print(set, 'dataset size:', self.x.shape) print(set, 'N classes', self.n_classes) print(set, 'min, max', np.min(self.x), np.max(self.x)) print(set, 'nsamples', self.nsamples) print('--------------')