Python utils.download() Examples
The following are 7
code examples of utils.download().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: process_data.py From GPPVAE with Apache License 2.0 | 6 votes |
def main(): # 1. download and unzip data download_data(data_dir) # 2. load data RV = import_data() # 3. split train, validation and test RV = split_data(RV) # 4. export out_file = os.path.join(data_dir, "data_faces.h5") fout = h5py.File(out_file, "w") for key in RV.keys(): fout.create_dataset(key, data=RV[key]) fout.close()
Example #2
Source File: audio_downloads.py From Looking-to-Listen-at-the-Cocktail-Party with MIT License | 5 votes |
def make_audio(location, name, d_csv, start_idx, end_idx): for i in range(start_idx,end_idx): f_name = name + str(i) link = "https://www.youtube.com/watch?v="+d_csv.loc[i][0] start_time = d_csv.loc[i][1] end_time = start_time+3.0 utils.download(location,f_name,link) utils.cut(location,f_name,start_time,end_time) print("\r Process audio... ".format(i) + str(i), end="") print("\r Finish !!", end="")
Example #3
Source File: ukbench.py From SoTu with MIT License | 5 votes |
def __init__(self, root): self.root = root if not posixpath.exists(posixpath.join(self.root, self.ukbench_dir)): download(self.root, self.filename, self.url) unzip(self.root, self.filename, self.ukbench_dir) self.uris = sorted(list_files(root=posixpath.join(self.root, self.ukbench_dir, 'full'), suffix=('png', 'jpg', 'jpeg', 'gif')))
Example #4
Source File: load_vgg_sol.py From stanford-tensorflow-tutorials with MIT License | 5 votes |
def __init__(self, input_img): utils.download(VGG_DOWNLOAD_LINK, VGG_FILENAME, EXPECTED_BYTES) self.vgg_layers = scipy.io.loadmat(VGG_FILENAME)['layers'] self.input_img = input_img self.mean_pixels = np.array([123.68, 116.779, 103.939]).reshape((1,1,1,3))
Example #5
Source File: load_vgg.py From stanford-tensorflow-tutorials with MIT License | 5 votes |
def __init__(self, input_img): utils.download(VGG_DOWNLOAD_LINK, VGG_FILENAME, EXPECTED_BYTES) self.vgg_layers = scipy.io.loadmat(VGG_FILENAME)['layers'] self.input_img = input_img self.mean_pixels = np.array([123.68, 116.779, 103.939]).reshape((1,1,1,3))
Example #6
Source File: style_transfer.py From stanford-tensorflow-tutorials with MIT License | 5 votes |
def main(): with tf.variable_scope('input') as scope: # use variable instead of placeholder because we're training the intial image to make it # look like both the content image and the style image input_image = tf.Variable(np.zeros([1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]), dtype=tf.float32) utils.download(VGG_DOWNLOAD_LINK, VGG_MODEL, EXPECTED_BYTES) utils.make_dir('checkpoints') utils.make_dir('outputs') model = vgg_model.load_vgg(VGG_MODEL, input_image) model['global_step'] = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') content_image = utils.get_resized_image(CONTENT_IMAGE, IMAGE_HEIGHT, IMAGE_WIDTH) content_image = content_image - MEAN_PIXELS style_image = utils.get_resized_image(STYLE_IMAGE, IMAGE_HEIGHT, IMAGE_WIDTH) style_image = style_image - MEAN_PIXELS model['content_loss'], model['style_loss'], model['total_loss'] = _create_losses(model, input_image, content_image, style_image) ############################### ## TO DO: create optimizer ## model['optimizer'] = ... ############################### model['summary_op'] = _create_summary(model) initial_image = utils.generate_noise_image(content_image, IMAGE_HEIGHT, IMAGE_WIDTH, NOISE_RATIO) train(model, input_image, initial_image)
Example #7
Source File: style_transfer.py From stanford-tensorflow-tutorials with MIT License | 5 votes |
def main(): with tf.variable_scope('input') as scope: # use variable instead of placeholder because we're training the intial image to make it # look like both the content image and the style image input_image = tf.Variable(np.zeros([1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]), dtype=tf.float32) utils.download(VGG_DOWNLOAD_LINK, VGG_MODEL, EXPECTED_BYTES) utils.make_dir('checkpoints') utils.make_dir('outputs') model = vgg_model.load_vgg(VGG_MODEL, input_image) model['global_step'] = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') content_image = utils.get_resized_image(CONTENT_IMAGE, IMAGE_HEIGHT, IMAGE_WIDTH) content_image = content_image - MEAN_PIXELS style_image = utils.get_resized_image(STYLE_IMAGE, IMAGE_HEIGHT, IMAGE_WIDTH) style_image = style_image - MEAN_PIXELS model['content_loss'], model['style_loss'], model['total_loss'] = _create_losses(model, input_image, content_image, style_image) ############################### ## TO DO: create optimizer model['optimizer'] = tf.train.AdamOptimizer(LR).minimize(model['total_loss'], global_step=model['global_step']) ############################### model['summary_op'] = _create_summary(model) initial_image = utils.generate_noise_image(content_image, IMAGE_HEIGHT, IMAGE_WIDTH, NOISE_RATIO) train(model, input_image, initial_image)