Python utils.resize_image() Examples
The following are 30
code examples of utils.resize_image().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: phiseg_generate_samples.py From PHiSeg-code with Apache License 2.0 | 6 votes |
def preproc_image(x, nlabels=None): x_b = np.squeeze(x) ims = x_b.shape[:2] if nlabels: x_b = np.uint8((x_b / (nlabels)) * 255) # not nlabels - 1 because I prefer gray over white else: x_b = utils.convert_to_uint8(x_b) # x_b = cv2.cvtColor(np.squeeze(x_b), cv2.COLOR_GRAY2BGR) # x_b = utils.histogram_equalization(x_b) x_b = utils.resize_image(x_b, (2 * ims[0], 2 * ims[1]), interp=cv2.INTER_NEAREST) # ims_n = x_b.shape[:2] # x_b = x_b[ims_n[0]//4:3*ims_n[0]//4, ims_n[1]//4: 3*ims_n[1]//4,...] return x_b
Example #2
Source File: model_voxel_generation.py From object_detection_with_tensorflow with MIT License | 6 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels): """Build the visualization grid with py_func.""" quantity, img_height, img_width = input_images.shape[:3] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = input_images[index, :, :, :] gt_proj_ = gt_projs[index, :, :, :] pred_proj_ = pred_projs[index, :, :, :] pred_voxel_ = utils.display_voxel(pred_voxels[index, :, :, :, 0]) pred_voxel_ = utils.resize_image(pred_voxel_, img_height, img_width) if col == 0: tmp_ = np.concatenate([input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) else: tmp_ = np.concatenate( [tmp_, input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) out_grid = out_grid.astype(np.uint8) return out_grid
Example #3
Source File: model_voxel_generation.py From object_detection_kitti with Apache License 2.0 | 6 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels): """Build the visualization grid with py_func.""" quantity, img_height, img_width = input_images.shape[:3] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = input_images[index, :, :, :] gt_proj_ = gt_projs[index, :, :, :] pred_proj_ = pred_projs[index, :, :, :] pred_voxel_ = utils.display_voxel(pred_voxels[index, :, :, :, 0]) pred_voxel_ = utils.resize_image(pred_voxel_, img_height, img_width) if col == 0: tmp_ = np.concatenate([input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) else: tmp_ = np.concatenate( [tmp_, input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) out_grid = out_grid.astype(np.uint8) return out_grid
Example #4
Source File: model_voxel_generation.py From hands-detection with MIT License | 6 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels): """Build the visualization grid with py_func.""" quantity, img_height, img_width = input_images.shape[:3] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = input_images[index, :, :, :] gt_proj_ = gt_projs[index, :, :, :] pred_proj_ = pred_projs[index, :, :, :] pred_voxel_ = utils.display_voxel(pred_voxels[index, :, :, :, 0]) pred_voxel_ = utils.resize_image(pred_voxel_, img_height, img_width) if col == 0: tmp_ = np.concatenate([input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) else: tmp_ = np.concatenate( [tmp_, input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) out_grid = out_grid.astype(np.uint8) return out_grid
Example #5
Source File: model_voxel_generation.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels): """Build the visualization grid with py_func.""" quantity, img_height, img_width = input_images.shape[:3] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = input_images[index, :, :, :] gt_proj_ = gt_projs[index, :, :, :] pred_proj_ = pred_projs[index, :, :, :] pred_voxel_ = utils.display_voxel(pred_voxels[index, :, :, :, 0]) pred_voxel_ = utils.resize_image(pred_voxel_, img_height, img_width) if col == 0: tmp_ = np.concatenate([input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) else: tmp_ = np.concatenate( [tmp_, input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) out_grid = out_grid.astype(np.uint8) return out_grid
Example #6
Source File: model.py From CFUN with MIT License | 6 votes |
def __getitem__(self, image_index): image_id = self.image_ids[image_index] # Load image, which is [H, W, D, C] first. image = self.dataset.load_image(image_id) # Load mask, which is [H, W, D] first. mask = self.dataset.load_mask(image_id) # Note that window has already been (z1, y1, x1, z2, y2, x2) here. image, window, scale, padding, crop = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, max_dim=self.config.IMAGE_MAX_DIM, min_scale=self.config.IMAGE_MIN_SCALE, mode=self.config.IMAGE_RESIZE_MODE) mask = utils.resize_mask(mask, scale, padding, max_dim=self.config.IMAGE_MAX_DIM, min_dim=self.config.IMAGE_MIN_DIM, crop=crop, mode=self.config.IMAGE_RESIZE_MODE) # Active classes # Different datasets have different classes, so track the classes supported in the dataset of this image. active_class_ids = np.zeros([self.dataset.num_classes], dtype=np.int32) source_class_ids = self.dataset.source_class_ids[self.dataset.image_info[image_id]["source"]] active_class_ids[source_class_ids] = 1 # Image meta data image_meta = compose_image_meta(image_id, image.shape, window, active_class_ids) return image, image_meta, mask
Example #7
Source File: model_voxel_generation.py From models with Apache License 2.0 | 6 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels): """Build the visualization grid with py_func.""" quantity, img_height, img_width = input_images.shape[:3] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = input_images[index, :, :, :] gt_proj_ = gt_projs[index, :, :, :] pred_proj_ = pred_projs[index, :, :, :] pred_voxel_ = utils.display_voxel(pred_voxels[index, :, :, :, 0]) pred_voxel_ = utils.resize_image(pred_voxel_, img_height, img_width) if col == 0: tmp_ = np.concatenate([input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) else: tmp_ = np.concatenate( [tmp_, input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) out_grid = out_grid.astype(np.uint8) return out_grid
Example #8
Source File: model_voxel_generation.py From Gun-Detector with Apache License 2.0 | 6 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels): """Build the visualization grid with py_func.""" quantity, img_height, img_width = input_images.shape[:3] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = input_images[index, :, :, :] gt_proj_ = gt_projs[index, :, :, :] pred_proj_ = pred_projs[index, :, :, :] pred_voxel_ = utils.display_voxel(pred_voxels[index, :, :, :, 0]) pred_voxel_ = utils.resize_image(pred_voxel_, img_height, img_width) if col == 0: tmp_ = np.concatenate([input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) else: tmp_ = np.concatenate( [tmp_, input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) out_grid = out_grid.astype(np.uint8) return out_grid
Example #9
Source File: model_voxel_generation.py From yolo_v2 with Apache License 2.0 | 6 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels): """Build the visualization grid with py_func.""" quantity, img_height, img_width = input_images.shape[:3] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = input_images[index, :, :, :] gt_proj_ = gt_projs[index, :, :, :] pred_proj_ = pred_projs[index, :, :, :] pred_voxel_ = utils.display_voxel(pred_voxels[index, :, :, :, 0]) pred_voxel_ = utils.resize_image(pred_voxel_, img_height, img_width) if col == 0: tmp_ = np.concatenate([input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) else: tmp_ = np.concatenate( [tmp_, input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) out_grid = out_grid.astype(np.uint8) return out_grid
Example #10
Source File: model_voxel_generation.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels): """Build the visualization grid with py_func.""" quantity, img_height, img_width = input_images.shape[:3] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = input_images[index, :, :, :] gt_proj_ = gt_projs[index, :, :, :] pred_proj_ = pred_projs[index, :, :, :] pred_voxel_ = utils.display_voxel(pred_voxels[index, :, :, :, 0]) pred_voxel_ = utils.resize_image(pred_voxel_, img_height, img_width) if col == 0: tmp_ = np.concatenate([input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) else: tmp_ = np.concatenate( [tmp_, input_img_, gt_proj_, pred_proj_, pred_voxel_], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) out_grid = out_grid.astype(np.uint8) return out_grid
Example #11
Source File: model_resnet_v2.py From cvpr-2018-autonomous-driving-autopilot-solution with MIT License | 5 votes |
def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matricies [height,width,depth]. Images can have different sizes. Returns 3 Numpy matricies: molded_images: [N, h, w, 3]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] image_metas = [] windows = [] for image in images: # Resize image to fit the model expected size # TODO: move resizing to mold_image() molded_image, window, scale, padding = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, max_dim=self.config.IMAGE_MAX_DIM, padding=self.config.IMAGE_PADDING) molded_image = mold_image(molded_image, self.config) # Build image_meta image_meta = compose_image_meta( 0, image.shape, window, np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) # Append molded_images.append(molded_image) windows.append(window) image_metas.append(image_meta) # Pack into arrays molded_images = np.stack(molded_images) image_metas = np.stack(image_metas) windows = np.stack(windows) return molded_images, image_metas, windows
Example #12
Source File: model_resnext_v2.py From cvpr-2018-autonomous-driving-autopilot-solution with MIT License | 5 votes |
def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matricies [height,width,depth]. Images can have different sizes. Returns 3 Numpy matricies: molded_images: [N, h, w, 3]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] image_metas = [] windows = [] for image in images: # Resize image to fit the model expected size # TODO: move resizing to mold_image() molded_image, window, scale, padding = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, max_dim=self.config.IMAGE_MAX_DIM, padding=self.config.IMAGE_PADDING) molded_image = mold_image(molded_image, self.config) # Build image_meta image_meta = compose_image_meta( 0, image.shape, window, np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) # Append molded_images.append(molded_image) windows.append(window) image_metas.append(image_meta) # Pack into arrays molded_images = np.stack(molded_images) image_metas = np.stack(image_metas) windows = np.stack(windows) return molded_images, image_metas, windows
Example #13
Source File: model_seresnext.py From cvpr-2018-autonomous-driving-autopilot-solution with MIT License | 5 votes |
def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matricies [height,width,depth]. Images can have different sizes. Returns 3 Numpy matricies: molded_images: [N, h, w, 3]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] image_metas = [] windows = [] for image in images: # Resize image to fit the model expected size # TODO: move resizing to mold_image() molded_image, window, scale, padding = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, max_dim=self.config.IMAGE_MAX_DIM, padding=self.config.IMAGE_PADDING) molded_image = mold_image(molded_image, self.config) # Build image_meta image_meta = compose_image_meta( 0, image.shape, window, np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) # Append molded_images.append(molded_image) windows.append(window) image_metas.append(image_meta) # Pack into arrays molded_images = np.stack(molded_images) image_metas = np.stack(image_metas) windows = np.stack(windows) return molded_images, image_metas, windows
Example #14
Source File: model.py From cvpr-2018-autonomous-driving-autopilot-solution with MIT License | 5 votes |
def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matricies [height,width,depth]. Images can have different sizes. Returns 3 Numpy matricies: molded_images: [N, h, w, 3]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] image_metas = [] windows = [] for image in images: # Resize image to fit the model expected size # TODO: move resizing to mold_image() molded_image, window, scale, padding = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, max_dim=self.config.IMAGE_MAX_DIM, padding=self.config.IMAGE_PADDING) molded_image = mold_image(molded_image, self.config) # Build image_meta image_meta = compose_image_meta( 0, image.shape, window, np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) # Append molded_images.append(molded_image) windows.append(window) image_metas.append(image_meta) # Pack into arrays molded_images = np.stack(molded_images) image_metas = np.stack(image_metas) windows = np.stack(windows) return molded_images, image_metas, windows
Example #15
Source File: data_manager.py From CRNN with MIT License | 5 votes |
def batch_generator(self, queue): """Takes a queue and enqueue batches in it """ generator = GeneratorFromDict(language=self.language) while True: batch = [] while len(batch) < self.batch_size: img, lbl = generator.next() batch.append( ( resize_image(np.array(img.convert("L")), self.max_image_width)[ 0 ], lbl, label_to_array(lbl, self.char_vector), ) ) raw_batch_x, raw_batch_y, raw_batch_la = zip(*batch) batch_y = np.reshape(np.array(raw_batch_y), (-1)) batch_dt = sparse_tuple_from(np.reshape(np.array(raw_batch_la), (-1))) raw_batch_x = np.swapaxes(raw_batch_x, 1, 2) raw_batch_x = raw_batch_x / 255.0 batch_x = np.reshape( np.array(raw_batch_x), (len(raw_batch_x), self.max_image_width, 32, 1) ) if queue.qsize() < 20: queue.put((batch_y, batch_dt, batch_x)) else: pass
Example #16
Source File: data_manager.py From CRNN with MIT License | 5 votes |
def load_data(self): """Load all the images in the folder """ print("Loading data") examples = [] count = 0 skipped = 0 for f in os.listdir(self.examples_path): if len(f.split("_")[0]) > self.max_char_count: continue arr, initial_len = resize_image( imread(os.path.join(self.examples_path, f), mode="L"), self.max_image_width, ) examples.append( ( arr, f.split("_")[0], label_to_array(f.split("_")[0], self.char_vector), ) ) count += 1 return examples, len(examples)
Example #17
Source File: model_ptn.py From models with Apache License 2.0 | 5 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, input_voxels, output_voxels, vis_size=128): """Builds a grid image by concatenating the input images.""" quantity = input_images.shape[0] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = utils.resize_image(input_images[index, :, :, :], vis_size, vis_size) gt_proj_ = utils.resize_image(gt_projs[index, :, :, :], vis_size, vis_size) pred_proj_ = utils.resize_image(pred_projs[index, :, :, :], vis_size, vis_size) gt_voxel_vis = utils.resize_image( utils.display_voxel(input_voxels[index, :, :, :, 0]), vis_size, vis_size) pred_voxel_vis = utils.resize_image( utils.display_voxel(output_voxels[index, :, :, :, 0]), vis_size, vis_size) if col == 0: tmp_ = np.concatenate( [input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis], 1) else: tmp_ = np.concatenate([ tmp_, input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis ], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) return out_grid
Example #18
Source File: model_ptn.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, input_voxels, output_voxels, vis_size=128): """Builds a grid image by concatenating the input images.""" quantity = input_images.shape[0] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = utils.resize_image(input_images[index, :, :, :], vis_size, vis_size) gt_proj_ = utils.resize_image(gt_projs[index, :, :, :], vis_size, vis_size) pred_proj_ = utils.resize_image(pred_projs[index, :, :, :], vis_size, vis_size) gt_voxel_vis = utils.resize_image( utils.display_voxel(input_voxels[index, :, :, :, 0]), vis_size, vis_size) pred_voxel_vis = utils.resize_image( utils.display_voxel(output_voxels[index, :, :, :, 0]), vis_size, vis_size) if col == 0: tmp_ = np.concatenate( [input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis], 1) else: tmp_ = np.concatenate([ tmp_, input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis ], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) return out_grid
Example #19
Source File: model_ptn.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, input_voxels, output_voxels, vis_size=128): """Builds a grid image by concatenating the input images.""" quantity = input_images.shape[0] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = utils.resize_image(input_images[index, :, :, :], vis_size, vis_size) gt_proj_ = utils.resize_image(gt_projs[index, :, :, :], vis_size, vis_size) pred_proj_ = utils.resize_image(pred_projs[index, :, :, :], vis_size, vis_size) gt_voxel_vis = utils.resize_image( utils.display_voxel(input_voxels[index, :, :, :, 0]), vis_size, vis_size) pred_voxel_vis = utils.resize_image( utils.display_voxel(output_voxels[index, :, :, :, 0]), vis_size, vis_size) if col == 0: tmp_ = np.concatenate( [input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis], 1) else: tmp_ = np.concatenate([ tmp_, input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis ], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) return out_grid
Example #20
Source File: model_rcnn_weight.py From 2018DSB with MIT License | 5 votes |
def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matricies [height,width,depth]. Images can have different sizes. Returns 3 Numpy matricies: molded_images: [N, h, w, 3]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] windows = [] for image in images: # Resize image to fit the model expected size # TODO: move resizing to mold_image() molded_image, window, scale, padding = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, max_dim=self.config.IMAGE_MAX_DIM, padding=self.config.IMAGE_PADDING) molded_image = mold_image(molded_image, self.config) # Append molded_images.append(molded_image) windows.append(window) # Pack into arrays molded_images = np.stack(molded_images) windows = np.stack(windows) return molded_images, windows
Example #21
Source File: model.py From PyTorch-Luna16 with Apache License 2.0 | 5 votes |
def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matricies [height,width,depth]. Images can have different sizes. Returns 3 Numpy matricies: molded_images: [N, h, w, 3]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] image_metas = [] windows = [] for image in images: # Resize image to fit the model expected size # TODO: move resizing to mold_image() molded_image, window, scale, padding = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, max_dim=self.config.IMAGE_MAX_DIM, padding=self.config.IMAGE_PADDING) molded_image = mold_image(molded_image, self.config) # Build image_meta image_meta = compose_image_meta( 0, image.shape, window, np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) # Append molded_images.append(molded_image) windows.append(window) image_metas.append(image_meta) # Pack into arrays molded_images = np.stack(molded_images) image_metas = np.stack(image_metas) windows = np.stack(windows) return molded_images, image_metas, windows
Example #22
Source File: play.py From TensorKart with MIT License | 5 votes |
def get_action(self, obs): ### determine manual override manual_override = self.real_controller.LeftBumper == 1 if not manual_override: ## Look vec = resize_image(obs) vec = np.expand_dims(vec, axis=0) # expand dimensions for predict, it wants (1,66,200,3) not (66, 200, 3) ## Think joystick = self.model.predict(vec, batch_size=1)[0] else: joystick = self.real_controller.read() joystick[1] *= -1 # flip y (this is in the config when it runs normally) ## Act ### calibration output = [ int(joystick[0] * 80), int(joystick[1] * 80), int(round(joystick[2])), int(round(joystick[3])), int(round(joystick[4])), ] ### print to console if manual_override: cprint("Manual: " + str(output), 'yellow') else: cprint("AI: " + str(output), 'green') return output
Example #23
Source File: data_manager.py From NRTR with MIT License | 5 votes |
def __load_data(self): """ Load all the images in the folder """ print('Loading data') examples = [] count = 0 skipped = 0 for i, f in enumerate(os.listdir(self.examples_path)): if i > 100000: break if len(f.split('_')[0]) > self.max_char_count: continue arr, initial_len = resize_image( os.path.join(self.examples_path, f), self.max_image_width ) examples.append( ( arr, f.split('_')[0].lower(), label_to_array(f.split('_')[0].lower()), label_to_array_2(f.split('_')[0].lower()) ) ) count += 1 print(count) return examples, len(examples)
Example #24
Source File: model.py From segmentation-unet-maskrcnn with MIT License | 5 votes |
def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matricies [height,width,depth]. Images can have different sizes. Returns 3 Numpy matricies: molded_images: [N, h, w, 3]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] image_metas = [] windows = [] for image in images: # Resize image to fit the model expected size # TODO: move resizing to mold_image() molded_image, window, scale, padding = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, max_dim=self.config.IMAGE_MAX_DIM, padding=self.config.IMAGE_PADDING) molded_image = mold_image(molded_image, self.config) # Build image_meta image_meta = compose_image_meta( 0, image.shape, window, np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) # Append molded_images.append(molded_image) windows.append(window) image_metas.append(image_meta) # Pack into arrays molded_images = np.stack(molded_images) image_metas = np.stack(image_metas) windows = np.stack(windows) return molded_images, image_metas, windows
Example #25
Source File: model.py From latte with Apache License 2.0 | 5 votes |
def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matricies [height,width,depth]. Images can have different sizes. Returns 3 Numpy matricies: molded_images: [N, h, w, 3]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] image_metas = [] windows = [] for image in images: # Resize image to fit the model expected size # TODO: move resizing to mold_image() molded_image, window, scale, padding = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, max_dim=self.config.IMAGE_MAX_DIM, padding=self.config.IMAGE_PADDING) molded_image = mold_image(molded_image, self.config) # Build image_meta image_meta = compose_image_meta( 0, image.shape, window, np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) # Append molded_images.append(molded_image) windows.append(window) image_metas.append(image_meta) # Pack into arrays molded_images = np.stack(molded_images) image_metas = np.stack(image_metas) windows = np.stack(windows) return molded_images, image_metas, windows
Example #26
Source File: model_ptn.py From yolo_v2 with Apache License 2.0 | 5 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, input_voxels, output_voxels, vis_size=128): """Builds a grid image by concatenating the input images.""" quantity = input_images.shape[0] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = utils.resize_image(input_images[index, :, :, :], vis_size, vis_size) gt_proj_ = utils.resize_image(gt_projs[index, :, :, :], vis_size, vis_size) pred_proj_ = utils.resize_image(pred_projs[index, :, :, :], vis_size, vis_size) gt_voxel_vis = utils.resize_image( utils.display_voxel(input_voxels[index, :, :, :, 0]), vis_size, vis_size) pred_voxel_vis = utils.resize_image( utils.display_voxel(output_voxels[index, :, :, :, 0]), vis_size, vis_size) if col == 0: tmp_ = np.concatenate( [input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis], 1) else: tmp_ = np.concatenate([ tmp_, input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis ], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) return out_grid
Example #27
Source File: model_ptn.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, input_voxels, output_voxels, vis_size=128): """Builds a grid image by concatenating the input images.""" quantity = input_images.shape[0] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = utils.resize_image(input_images[index, :, :, :], vis_size, vis_size) gt_proj_ = utils.resize_image(gt_projs[index, :, :, :], vis_size, vis_size) pred_proj_ = utils.resize_image(pred_projs[index, :, :, :], vis_size, vis_size) gt_voxel_vis = utils.resize_image( utils.display_voxel(input_voxels[index, :, :, :, 0]), vis_size, vis_size) pred_voxel_vis = utils.resize_image( utils.display_voxel(output_voxels[index, :, :, :, 0]), vis_size, vis_size) if col == 0: tmp_ = np.concatenate( [input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis], 1) else: tmp_ = np.concatenate([ tmp_, input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis ], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) return out_grid
Example #28
Source File: model_ptn.py From hands-detection with MIT License | 5 votes |
def _build_image_grid(input_images, gt_projs, pred_projs, input_voxels, output_voxels, vis_size=128): """Builds a grid image by concatenating the input images.""" quantity = input_images.shape[0] for row in xrange(int(quantity / 3)): for col in xrange(3): index = row * 3 + col input_img_ = utils.resize_image(input_images[index, :, :, :], vis_size, vis_size) gt_proj_ = utils.resize_image(gt_projs[index, :, :, :], vis_size, vis_size) pred_proj_ = utils.resize_image(pred_projs[index, :, :, :], vis_size, vis_size) gt_voxel_vis = utils.resize_image( utils.display_voxel(input_voxels[index, :, :, :, 0]), vis_size, vis_size) pred_voxel_vis = utils.resize_image( utils.display_voxel(output_voxels[index, :, :, :, 0]), vis_size, vis_size) if col == 0: tmp_ = np.concatenate( [input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis], 1) else: tmp_ = np.concatenate([ tmp_, input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis ], 1) if row == 0: out_grid = tmp_ else: out_grid = np.concatenate([out_grid, tmp_], 0) return out_grid
Example #29
Source File: model.py From CFUN with MIT License | 5 votes |
def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matrices [height, width, depth, channels]. Images can have different sizes. Returns 3 Numpy matrices: molded_images: [N, 1, d, h, w]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (z1, y1, x1, z2, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] image_metas = [] windows = [] for image in images: # Resize image to fit the model expected size molded_image, window, scale, padding, crop = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, max_dim=self.config.IMAGE_MAX_DIM, min_scale=self.config.IMAGE_MIN_SCALE, mode=self.config.IMAGE_RESIZE_MODE) molded_image = mold_image(molded_image) molded_image = molded_image.transpose((3, 2, 0, 1)) # [C, D, H, W] # Build image_meta image_meta = compose_image_meta( 0, image.shape, window, np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) # Append molded_images.append(molded_image) windows.append(window) image_metas.append(image_meta) # Pack into arrays molded_images = np.stack(molded_images) image_metas = np.stack(image_metas) windows = np.stack(windows) return molded_images, image_metas, windows
Example #30
Source File: dqn_agent.py From dist-dqn with MIT License | 5 votes |
def _get_frame_resizer(cls, env, config): """ Returns a lambda that takes a screen frame and resizes it to the configured width and height. If the state doesn't need to be resized for the environment, returns an identity function. @return: lambda (frame -> resized_frame) """ width, height = config.resize_width, config.resize_height if width > 0 and height > 0: return partial(utils.resize_image, width=width, height=height) return lambda x: x