Python utils.calculate_accuracy() Examples
The following are 4
code examples of utils.calculate_accuracy().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: test.py From DriverPostureClassification with MIT License | 4 votes |
def test(data_loader, model, args, device): batch_time = AverageMeter() data_time = AverageMeter() top1 = AverageMeter() top3 = AverageMeter() # switch to evaluate mode model.eval() end_time = time.time() for i, (input, target) in enumerate(data_loader): # measure data loading time data_time.update(time.time() - end_time) input = input.to(device) target = target.to(device) # compute output and loss output = model(input) # measure accuracy and record loss prec1, prec3 = calculate_accuracy(output, target, topk=(1, 3)) # prec1[0]: convert torch.Size([1]) to torch.Size([]) top1.update(prec1[0].item(), input.size(0)) top3.update(prec3[0].item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end_time) end_time = time.time() if (i + 1) % args.log_interval == 0: print('Test Iter [{0}/{1}]\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@3 {top3.val:.3f} ({top3.avg:.3f})\t' 'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data Time {data_time.val:.3f} ({data_time.avg:.3f})'.format( i + 1, len(data_loader), top1=top1, top3=top3, batch_time=batch_time, data_time=data_time)) print(' * Prec@1 {top1.avg:.2f}% | Prec@3 {top3.avg:.2f}%'.format( top1=top1, top3=top3)) return top1.avg
Example #2
Source File: validation.py From video-classification-3d-cnn-pytorch with MIT License | 4 votes |
def val_epoch(epoch, data_loader, model, criterion, opt, logger): print('validation at epoch {}'.format(epoch)) model.eval() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() accuracies = AverageMeter() end_time = time.time() for i, (inputs, targets) in enumerate(data_loader): data_time.update(time.time() - end_time) if not opt.no_cuda: targets = targets.cuda(async=True) inputs = Variable(inputs, volatile=True) targets = Variable(targets, volatile=True) outputs = model(inputs) loss = criterion(outputs, targets) acc = calculate_accuracy(outputs, targets) losses.update(loss.data[0], inputs.size(0)) accuracies.update(acc, inputs.size(0)) batch_time.update(time.time() - end_time) end_time = time.time() print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Acc {acc.val:.3f} ({acc.avg:.3f})'.format( epoch, i + 1, len(data_loader), batch_time=batch_time, data_time=data_time, loss=losses, acc=accuracies)) logger.log({ 'epoch': epoch, 'loss': losses.avg, 'acc': accuracies.avg }) return losses.avg
Example #3
Source File: validation.py From video_feature_extractor with Apache License 2.0 | 4 votes |
def val_epoch(epoch, data_loader, model, criterion, opt, logger): print('validation at epoch {}'.format(epoch)) model.eval() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() accuracies = AverageMeter() end_time = time.time() for i, (inputs, targets) in enumerate(data_loader): data_time.update(time.time() - end_time) if not opt.no_cuda: targets = targets.cuda(async=True) inputs = Variable(inputs, volatile=True) targets = Variable(targets, volatile=True) outputs = model(inputs) loss = criterion(outputs, targets) acc = calculate_accuracy(outputs, targets) losses.update(loss.data[0], inputs.size(0)) accuracies.update(acc, inputs.size(0)) batch_time.update(time.time() - end_time) end_time = time.time() print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Acc {acc.val:.3f} ({acc.avg:.3f})'.format( epoch, i + 1, len(data_loader), batch_time=batch_time, data_time=data_time, loss=losses, acc=accuracies)) logger.log({ 'epoch': epoch, 'loss': losses.avg, 'acc': accuracies.avg }) return losses.avg
Example #4
Source File: validation.py From video-caption.pytorch with MIT License | 4 votes |
def val_epoch(epoch, data_loader, model, criterion, opt, logger): print('validation at epoch {}'.format(epoch)) model.eval() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() accuracies = AverageMeter() end_time = time.time() for i, (inputs, targets) in enumerate(data_loader): data_time.update(time.time() - end_time) if not opt.no_cuda: targets = targets.cuda(async=True) inputs = Variable(inputs, volatile=True) targets = Variable(targets, volatile=True) outputs = model(inputs) loss = criterion(outputs, targets) acc = calculate_accuracy(outputs, targets) losses.update(loss.data[0], inputs.size(0)) accuracies.update(acc, inputs.size(0)) batch_time.update(time.time() - end_time) end_time = time.time() print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Acc {acc.val:.3f} ({acc.avg:.3f})'.format( epoch, i + 1, len(data_loader), batch_time=batch_time, data_time=data_time, loss=losses, acc=accuracies)) logger.log({ 'epoch': epoch, 'loss': losses.avg, 'acc': accuracies.avg }) return losses.avg