Python utils.progress_bar() Examples
The following are 10
code examples of utils.progress_bar().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: pySmartDL.py From kano-burners with GNU General Public License v2.0 | 6 votes |
def __init__(self, obj): threading.Thread.__init__(self) self.obj = obj self.progress_bar = obj.progress_bar self.logger = obj.logger self.shared_var = obj.shared_var self.dl_speed = 0 self.eta = 0 self.lastBytesSamples = [] # list with last 50 Bytes Samples. self.last_calculated_totalBytes = 0 self.calcETA_queue = [] self.calcETA_i = 0 self.calcETA_val = 0 self.dl_time = -1.0 self.daemon = True self.start()
Example #2
Source File: pySmartDL.py From kano-burners with GNU General Public License v2.0 | 5 votes |
def get_progress_bar(self, length=20): ''' Returns the current progress of the download as a string containing a progress bar. .. NOTE:: That's an alias for pySmartDL.utils.progress_bar(obj.get_progress()). :param length: The length of the progress bar in chars. Default is 20. :type length: int :rtype: string ''' return utils.progress_bar(self.get_progress(), length)
Example #3
Source File: pySmartDL.py From kano-burners with GNU General Public License v2.0 | 5 votes |
def run(self): t1 = time.time() while not self.obj.pool.done(): self.dl_speed = self.calcDownloadSpeed(self.shared_var.value) if self.dl_speed > 0: self.eta = self.calcETA((self.obj.filesize-self.shared_var.value)/self.dl_speed) if self.progress_bar: if self.obj.filesize: status = r"[*] %s / %s @ %s/s %s [%3.1f%%, %s left] " % (utils.sizeof_human(self.shared_var.value), utils.sizeof_human(self.obj.filesize), utils.sizeof_human(self.dl_speed), utils.progress_bar(1.0*self.shared_var.value/self.obj.filesize), self.shared_var.value * 100.0 / self.obj.filesize, utils.time_human(self.eta, fmt_short=True)) else: status = r"[*] %s / ??? MB @ %s/s " % (utils.sizeof_human(self.shared_var.value), utils.sizeof_human(self.dl_speed)) status = status + chr(8)*(len(status)+1) print status, time.sleep(0.1) if self.obj._killed: self.logger.debug("File download process has been stopped.") return if self.progress_bar: if self.obj.filesize: print r"[*] %s / %s @ %s/s %s [100%%, 0s left] " % (utils.sizeof_human(self.obj.filesize), utils.sizeof_human(self.obj.filesize), utils.sizeof_human(self.dl_speed), utils.progress_bar(1.0)) else: print r"[*] %s / %s @ %s/s " % (utils.sizeof_human(self.shared_var.value), self.shared_var.value / 1024.0**2, utils.sizeof_human(self.dl_speed)) t2 = time.time() self.dl_time = float(t2-t1) while self.obj.post_threadpool_thread.is_alive(): time.sleep(0.1) self.obj.pool.shutdown() self.obj.status = "finished" if not self.obj.errors: self.logger.debug("File downloaded within %.2f seconds." % self.dl_time)
Example #4
Source File: mainpro_FER.py From Facial-Expression-Recognition.Pytorch with MIT License | 5 votes |
def train(epoch): print('\nEpoch: %d' % epoch) global Train_acc net.train() train_loss = 0 correct = 0 total = 0 if epoch > learning_rate_decay_start and learning_rate_decay_start >= 0: frac = (epoch - learning_rate_decay_start) // learning_rate_decay_every decay_factor = learning_rate_decay_rate ** frac current_lr = opt.lr * decay_factor utils.set_lr(optimizer, current_lr) # set the decayed rate else: current_lr = opt.lr print('learning_rate: %s' % str(current_lr)) for batch_idx, (inputs, targets) in enumerate(trainloader): if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() optimizer.zero_grad() inputs, targets = Variable(inputs), Variable(targets) outputs = net(inputs) loss = criterion(outputs, targets) loss.backward() utils.clip_gradient(optimizer, 0.1) optimizer.step() train_loss += loss.data[0] _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).cpu().sum() utils.progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss/(batch_idx+1), 100.*correct/total, correct, total)) Train_acc = 100.*correct/total
Example #5
Source File: mainpro_FER.py From Facial-Expression-Recognition.Pytorch with MIT License | 5 votes |
def PublicTest(epoch): global PublicTest_acc global best_PublicTest_acc global best_PublicTest_acc_epoch net.eval() PublicTest_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(PublicTestloader): bs, ncrops, c, h, w = np.shape(inputs) inputs = inputs.view(-1, c, h, w) if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() inputs, targets = Variable(inputs, volatile=True), Variable(targets) outputs = net(inputs) outputs_avg = outputs.view(bs, ncrops, -1).mean(1) # avg over crops loss = criterion(outputs_avg, targets) PublicTest_loss += loss.data[0] _, predicted = torch.max(outputs_avg.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).cpu().sum() utils.progress_bar(batch_idx, len(PublicTestloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (PublicTest_loss / (batch_idx + 1), 100. * correct / total, correct, total)) # Save checkpoint. PublicTest_acc = 100.*correct/total if PublicTest_acc > best_PublicTest_acc: print('Saving..') print("best_PublicTest_acc: %0.3f" % PublicTest_acc) state = { 'net': net.state_dict() if use_cuda else net, 'acc': PublicTest_acc, 'epoch': epoch, } if not os.path.isdir(path): os.mkdir(path) torch.save(state, os.path.join(path,'PublicTest_model.t7')) best_PublicTest_acc = PublicTest_acc best_PublicTest_acc_epoch = epoch
Example #6
Source File: mainpro_CK+.py From Facial-Expression-Recognition.Pytorch with MIT License | 5 votes |
def train(epoch): print('\nEpoch: %d' % epoch) global Train_acc net.train() train_loss = 0 correct = 0 total = 0 if epoch > learning_rate_decay_start and learning_rate_decay_start >= 0: frac = (epoch - learning_rate_decay_start) // learning_rate_decay_every decay_factor = learning_rate_decay_rate ** frac current_lr = opt.lr * decay_factor utils.set_lr(optimizer, current_lr) # set the decayed rate else: current_lr = opt.lr print('learning_rate: %s' % str(current_lr)) for batch_idx, (inputs, targets) in enumerate(trainloader): if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() optimizer.zero_grad() inputs, targets = Variable(inputs), Variable(targets) outputs = net(inputs) loss = criterion(outputs, targets) loss.backward() utils.clip_gradient(optimizer, 0.1) optimizer.step() train_loss += loss.data[0] _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).cpu().sum() utils.progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss/(batch_idx+1), 100.*correct/total, correct, total)) Train_acc = 100.*correct/total
Example #7
Source File: pySmartDL.py From kano-burners with GNU General Public License v2.0 | 4 votes |
def __init__(self, urls, dest=None, progress_bar=True, fix_urls=True, logger=None, connect_default_logger=False): self.mirrors = [urls] if isinstance(urls, basestring) else urls if fix_urls: self.mirrors = [utils.url_fix(x) for x in self.mirrors] self.url = self.mirrors.pop(0) fn = os.path.basename(urlparse(self.url).path) self.dest = dest or os.path.join(tempfile.gettempdir(), 'pySmartDL', fn) if self.dest[-1] == os.sep: if os.path.exists(self.dest[:-1]) and os.path.isfile(self.dest[:-1]): os.unlink(self.dest[:-1]) self.dest += fn if os.path.isdir(self.dest): self.dest = os.path.join(self.dest, fn) self.progress_bar = progress_bar if logger: self.logger = logger elif connect_default_logger: self.logger = utils.create_debugging_logger() else: self.logger = utils.DummyLogger() self.headers = {'User-Agent': utils.get_random_useragent()} self.threads_count = 3 self.timeout = 4 self.current_attemp = 1 self.attemps_limit = 4 self.minChunkFile = 1024**2*2 # 2MB self.filesize = 0 self.shared_var = multiprocessing.Value(c_int, 0) # a ctypes var that counts the bytes already downloaded self.thread_shared_cmds = {} self.status = "ready" self.verify_hash = False self._killed = False self._failed = False self._start_func_blocking = True self.errors = [] self.post_threadpool_thread = None self.control_thread = None if not os.path.exists(os.path.dirname(self.dest)): self.logger.debug('Folder "%s" does not exist. Creating...' % os.path.dirname(self.dest)) os.makedirs(os.path.dirname(self.dest)) if not utils.is_HTTPRange_supported(self.url): self.logger.warning("Server does not support HTTPRange. threads_count is set to 1.") self.threads_count = 1 if os.path.exists(self.dest): self.logger.warning('Destination "%s" already exists. Existing file will be removed.' % self.dest) if not os.path.exists(os.path.dirname(self.dest)): self.logger.warning('Directory "%s" does not exist. Creating it...' % os.path.dirname(self.dest)) os.makedirs(os.path.dirname(self.dest)) self.pool = utils.ManagedThreadPoolExecutor(self.threads_count)
Example #8
Source File: train.py From Global-Encoding with MIT License | 4 votes |
def eval_model(model, data, params): model.eval() reference, candidate, source, alignments = [], [], [], [] count, total_count = 0, len(data['validset']) validloader = data['validloader'] tgt_vocab = data['tgt_vocab'] for src, tgt, src_len, tgt_len, original_src, original_tgt in validloader: if config.use_cuda: src = src.cuda() src_len = src_len.cuda() with torch.no_grad(): if config.beam_size > 1: samples, alignment, weight = model.beam_sample(src, src_len, beam_size=config.beam_size, eval_=True) else: samples, alignment = model.sample(src, src_len) candidate += [tgt_vocab.convertToLabels(s, utils.EOS) for s in samples] source += original_src reference += original_tgt if alignment is not None: alignments += [align for align in alignment] count += len(original_src) utils.progress_bar(count, total_count) if config.unk and config.attention != 'None': cands = [] for s, c, align in zip(source, candidate, alignments): cand = [] for word, idx in zip(c, align): if word == utils.UNK_WORD and idx < len(s): try: cand.append(s[idx]) except: cand.append(word) print("%d %d\n" % (len(s), idx)) else: cand.append(word) cands.append(cand) if len(cand) == 0: print('Error!') candidate = cands with codecs.open(params['log_path']+'candidate.txt','w+','utf-8') as f: for i in range(len(candidate)): f.write(" ".join(candidate[i])+'\n') score = {} for metric in config.metrics: score[metric] = getattr(utils, metric)(reference, candidate, params['log_path'], params['log'], config) return score
Example #9
Source File: mainpro_FER.py From Facial-Expression-Recognition.Pytorch with MIT License | 4 votes |
def PrivateTest(epoch): global PrivateTest_acc global best_PrivateTest_acc global best_PrivateTest_acc_epoch net.eval() PrivateTest_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(PrivateTestloader): bs, ncrops, c, h, w = np.shape(inputs) inputs = inputs.view(-1, c, h, w) if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() inputs, targets = Variable(inputs, volatile=True), Variable(targets) outputs = net(inputs) outputs_avg = outputs.view(bs, ncrops, -1).mean(1) # avg over crops loss = criterion(outputs_avg, targets) PrivateTest_loss += loss.data[0] _, predicted = torch.max(outputs_avg.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).cpu().sum() utils.progress_bar(batch_idx, len(PublicTestloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (PrivateTest_loss / (batch_idx + 1), 100. * correct / total, correct, total)) # Save checkpoint. PrivateTest_acc = 100.*correct/total if PrivateTest_acc > best_PrivateTest_acc: print('Saving..') print("best_PrivateTest_acc: %0.3f" % PrivateTest_acc) state = { 'net': net.state_dict() if use_cuda else net, 'best_PublicTest_acc': best_PublicTest_acc, 'best_PrivateTest_acc': PrivateTest_acc, 'best_PublicTest_acc_epoch': best_PublicTest_acc_epoch, 'best_PrivateTest_acc_epoch': epoch, } if not os.path.isdir(path): os.mkdir(path) torch.save(state, os.path.join(path,'PrivateTest_model.t7')) best_PrivateTest_acc = PrivateTest_acc best_PrivateTest_acc_epoch = epoch
Example #10
Source File: mainpro_CK+.py From Facial-Expression-Recognition.Pytorch with MIT License | 4 votes |
def test(epoch): global Test_acc global best_Test_acc global best_Test_acc_epoch net.eval() PrivateTest_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(testloader): bs, ncrops, c, h, w = np.shape(inputs) inputs = inputs.view(-1, c, h, w) if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() inputs, targets = Variable(inputs, volatile=True), Variable(targets) outputs = net(inputs) outputs_avg = outputs.view(bs, ncrops, -1).mean(1) # avg over crops loss = criterion(outputs_avg, targets) PrivateTest_loss += loss.data[0] _, predicted = torch.max(outputs_avg.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).cpu().sum() utils.progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (PrivateTest_loss / (batch_idx + 1), 100. * correct / total, correct, total)) # Save checkpoint. Test_acc = 100.*correct/total if Test_acc > best_Test_acc: print('Saving..') print("best_Test_acc: %0.3f" % Test_acc) state = {'net': net.state_dict() if use_cuda else net, 'best_Test_acc': Test_acc, 'best_Test_acc_epoch': epoch, } if not os.path.isdir(opt.dataset + '_' + opt.model): os.mkdir(opt.dataset + '_' + opt.model) if not os.path.isdir(path): os.mkdir(path) torch.save(state, os.path.join(path, 'Test_model.t7')) best_Test_acc = Test_acc best_Test_acc_epoch = epoch