Python utils.tensor_save_bgrimage() Examples

The following are 9 code examples of utils.tensor_save_bgrimage(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module utils , or try the search function .
Example #1
Source File: main.py    From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 6 votes vote down vote up
def evaluate(args):
    if args.cuda:
        ctx = mx.gpu(0)
    else:
        ctx = mx.cpu(0)
    # images
    content_image = utils.tensor_load_rgbimage(args.content_image,ctx, size=args.content_size, keep_asp=True)
    style_image = utils.tensor_load_rgbimage(args.style_image, ctx, size=args.style_size)
    style_image = utils.preprocess_batch(style_image)
    # model
    style_model = net.Net(ngf=args.ngf)
    style_model.load_parameters(args.model, ctx=ctx)
    # forward
    style_model.set_target(style_image)
    output = style_model(content_image)
    utils.tensor_save_bgrimage(output[0], args.output_image, args.cuda) 
Example #2
Source File: main.py    From training_results_v0.6 with Apache License 2.0 6 votes vote down vote up
def evaluate(args):
    if args.cuda:
        ctx = mx.gpu(0)
    else:
        ctx = mx.cpu(0)
    # images
    content_image = utils.tensor_load_rgbimage(args.content_image,ctx, size=args.content_size, keep_asp=True)
    style_image = utils.tensor_load_rgbimage(args.style_image, ctx, size=args.style_size)
    style_image = utils.preprocess_batch(style_image)
    # model
    style_model = net.Net(ngf=args.ngf)
    style_model.load_parameters(args.model, ctx=ctx)
    # forward
    style_model.set_target(style_image)
    output = style_model(content_image)
    utils.tensor_save_bgrimage(output[0], args.output_image, args.cuda) 
Example #3
Source File: main.py    From MXNet-Gluon-Style-Transfer with MIT License 6 votes vote down vote up
def evaluate(args):
    if args.cuda:
        ctx = mx.gpu(0)
    else:
        ctx = mx.cpu(0)
    # images
    content_image = utils.tensor_load_rgbimage(args.content_image,ctx, size=args.content_size, keep_asp=True)
    style_image = utils.tensor_load_rgbimage(args.style_image, ctx, size=args.style_size)
    style_image = utils.preprocess_batch(style_image)
    # model
    style_model = net.Net(ngf=args.ngf)
    style_model.load_params(args.model, ctx=ctx)
    # forward
    style_model.set_target(style_image)
    output = style_model(content_image)
    utils.tensor_save_bgrimage(output[0], args.output_image, args.cuda) 
Example #4
Source File: main.py    From SNIPER-mxnet with Apache License 2.0 6 votes vote down vote up
def evaluate(args):
    if args.cuda:
        ctx = mx.gpu(0)
    else:
        ctx = mx.cpu(0)
    # images
    content_image = utils.tensor_load_rgbimage(args.content_image,ctx, size=args.content_size, keep_asp=True)
    style_image = utils.tensor_load_rgbimage(args.style_image, ctx, size=args.style_size)
    style_image = utils.preprocess_batch(style_image)
    # model
    style_model = net.Net(ngf=args.ngf)
    style_model.load_params(args.model, ctx=ctx)
    # forward
    style_model.setTarget(style_image)
    output = style_model(content_image)
    utils.tensor_save_bgrimage(output[0], args.output_image, args.cuda) 
Example #5
Source File: neural_style.py    From fast-neural-style with MIT License 5 votes vote down vote up
def stylize(args):
    content_image = utils.tensor_load_rgbimage(args.content_image, scale=args.content_scale)
    content_image = content_image.unsqueeze(0)

    if args.cuda:
        content_image = content_image.cuda()
    content_image = Variable(utils.preprocess_batch(content_image), volatile=True)
    style_model = TransformerNet()
    style_model.load_state_dict(torch.load(args.model))

    if args.cuda:
        style_model.cuda()

    output = style_model(content_image)
    utils.tensor_save_bgrimage(output.data[0], args.output_image, args.cuda) 
Example #6
Source File: main.py    From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 4 votes vote down vote up
def optimize(args):
    """    Gatys et al. CVPR 2017
    ref: Image Style Transfer Using Convolutional Neural Networks
    """
    if args.cuda:
        ctx = mx.gpu(0)
    else:
        ctx = mx.cpu(0)
    # load the content and style target
    content_image = utils.tensor_load_rgbimage(args.content_image,ctx, size=args.content_size, keep_asp=True)
    content_image = utils.subtract_imagenet_mean_preprocess_batch(content_image)
    style_image = utils.tensor_load_rgbimage(args.style_image, ctx, size=args.style_size)
    style_image = utils.subtract_imagenet_mean_preprocess_batch(style_image)
    # load the pre-trained vgg-16 and extract features
    vgg = net.Vgg16()
    utils.init_vgg_params(vgg, 'models', ctx=ctx)
    # content feature
    f_xc_c = vgg(content_image)[1]
    # style feature
    features_style = vgg(style_image)
    gram_style = [net.gram_matrix(y) for y in features_style]
    # output
    output = Parameter('output', shape=content_image.shape)
    output.initialize(ctx=ctx)
    output.set_data(content_image)
    # optimizer
    trainer = gluon.Trainer([output], 'adam',
                            {'learning_rate': args.lr})
    mse_loss = gluon.loss.L2Loss()

    # optimizing the images
    for e in range(args.iters):
        utils.imagenet_clamp_batch(output.data(), 0, 255)
        # fix BN for pre-trained vgg
        with autograd.record():
            features_y = vgg(output.data())
            content_loss = 2 * args.content_weight * mse_loss(features_y[1], f_xc_c)
            style_loss = 0.
            for m in range(len(features_y)):
                gram_y = net.gram_matrix(features_y[m])
                gram_s = gram_style[m]
                style_loss = style_loss + 2 * args.style_weight * mse_loss(gram_y, gram_s)
            total_loss = content_loss + style_loss
            total_loss.backward()

        trainer.step(1)
        if (e + 1) % args.log_interval == 0:
            print('loss:{:.2f}'.format(total_loss.asnumpy()[0]))

    # save the image
    output = utils.add_imagenet_mean_batch(output.data())
    utils.tensor_save_bgrimage(output[0], args.output_image, args.cuda) 
Example #7
Source File: main.py    From training_results_v0.6 with Apache License 2.0 4 votes vote down vote up
def optimize(args):
    """    Gatys et al. CVPR 2017
    ref: Image Style Transfer Using Convolutional Neural Networks
    """
    if args.cuda:
        ctx = mx.gpu(0)
    else:
        ctx = mx.cpu(0)
    # load the content and style target
    content_image = utils.tensor_load_rgbimage(args.content_image,ctx, size=args.content_size, keep_asp=True)
    content_image = utils.subtract_imagenet_mean_preprocess_batch(content_image)
    style_image = utils.tensor_load_rgbimage(args.style_image, ctx, size=args.style_size)
    style_image = utils.subtract_imagenet_mean_preprocess_batch(style_image)
    # load the pre-trained vgg-16 and extract features
    vgg = net.Vgg16()
    utils.init_vgg_params(vgg, 'models', ctx=ctx)
    # content feature
    f_xc_c = vgg(content_image)[1]
    # style feature
    features_style = vgg(style_image)
    gram_style = [net.gram_matrix(y) for y in features_style]
    # output
    output = Parameter('output', shape=content_image.shape)
    output.initialize(ctx=ctx)
    output.set_data(content_image)
    # optimizer
    trainer = gluon.Trainer([output], 'adam',
                            {'learning_rate': args.lr})
    mse_loss = gluon.loss.L2Loss()

    # optimizing the images
    for e in range(args.iters):
        utils.imagenet_clamp_batch(output.data(), 0, 255)
        # fix BN for pre-trained vgg
        with autograd.record():
            features_y = vgg(output.data())
            content_loss = 2 * args.content_weight * mse_loss(features_y[1], f_xc_c)
            style_loss = 0.
            for m in range(len(features_y)):
                gram_y = net.gram_matrix(features_y[m])
                gram_s = gram_style[m]
                style_loss = style_loss + 2 * args.style_weight * mse_loss(gram_y, gram_s)
            total_loss = content_loss + style_loss
            total_loss.backward()

        trainer.step(1)
        if (e + 1) % args.log_interval == 0:
            print('loss:{:.2f}'.format(total_loss.asnumpy()[0]))

    # save the image
    output = utils.add_imagenet_mean_batch(output.data())
    utils.tensor_save_bgrimage(output[0], args.output_image, args.cuda) 
Example #8
Source File: main.py    From MXNet-Gluon-Style-Transfer with MIT License 4 votes vote down vote up
def optimize(args):
    """    Gatys et al. CVPR 2017
    ref: Image Style Transfer Using Convolutional Neural Networks
    """
    if args.cuda:
        ctx = mx.gpu(0)
    else:
        ctx = mx.cpu(0)
    # load the content and style target
    content_image = utils.tensor_load_rgbimage(args.content_image,ctx, size=args.content_size, keep_asp=True)
    content_image = utils.subtract_imagenet_mean_preprocess_batch(content_image)
    style_image = utils.tensor_load_rgbimage(args.style_image, ctx, size=args.style_size)
    style_image = utils.subtract_imagenet_mean_preprocess_batch(style_image)
    # load the pre-trained vgg-16 and extract features
    vgg = net.Vgg16()
    utils.init_vgg_params(vgg, 'models', ctx=ctx)
    # content feature
    f_xc_c = vgg(content_image)[1]
    # style feature
    features_style = vgg(style_image)
    gram_style = [net.gram_matrix(y) for y in features_style]
    # output
    output = Parameter('output', shape=content_image.shape)
    output.initialize(ctx=ctx)
    output.set_data(content_image)
    # optimizer
    trainer = gluon.Trainer([output], 'adam',
                            {'learning_rate': args.lr})
    mse_loss = gluon.loss.L2Loss()

    # optimizing the images
    for e in range(args.iters):
        utils.imagenet_clamp_batch(output.data(), 0, 255)
        # fix BN for pre-trained vgg
        with autograd.record():
            features_y = vgg(output.data())
            content_loss = 2 * args.content_weight * mse_loss(features_y[1], f_xc_c)
            style_loss = 0.
            for m in range(len(features_y)):
                gram_y = net.gram_matrix(features_y[m])
                gram_s = gram_style[m]
                style_loss = style_loss + 2 * args.style_weight * mse_loss(gram_y, gram_s)
            total_loss = content_loss + style_loss
            total_loss.backward()

        trainer.step(1)
        if (e + 1) % args.log_interval == 0:
            print('loss:{:.2f}'.format(total_loss.asnumpy()[0]))

    # save the image
    output = utils.add_imagenet_mean_batch(output.data())
    utils.tensor_save_bgrimage(output[0], args.output_image, args.cuda) 
Example #9
Source File: main.py    From SNIPER-mxnet with Apache License 2.0 4 votes vote down vote up
def optimize(args):
    """    Gatys et al. CVPR 2017
    ref: Image Style Transfer Using Convolutional Neural Networks
    """
    if args.cuda:
        ctx = mx.gpu(0)
    else:
        ctx = mx.cpu(0)
    # load the content and style target
    content_image = utils.tensor_load_rgbimage(args.content_image,ctx, size=args.content_size, keep_asp=True)
    content_image = utils.subtract_imagenet_mean_preprocess_batch(content_image)
    style_image = utils.tensor_load_rgbimage(args.style_image, ctx, size=args.style_size)
    style_image = utils.subtract_imagenet_mean_preprocess_batch(style_image)
    # load the pre-trained vgg-16 and extract features
    vgg = net.Vgg16()
    utils.init_vgg_params(vgg, 'models', ctx=ctx)
    # content feature
    f_xc_c = vgg(content_image)[1]
    # style feature
    features_style = vgg(style_image)
    gram_style = [net.gram_matrix(y) for y in features_style]
    # output
    output = Parameter('output', shape=content_image.shape)
    output.initialize(ctx=ctx)
    output.set_data(content_image)
    # optimizer
    trainer = gluon.Trainer([output], 'adam',
                            {'learning_rate': args.lr})
    mse_loss = gluon.loss.L2Loss()

    # optimizing the images
    for e in range(args.iters):
        utils.imagenet_clamp_batch(output.data(), 0, 255)
        # fix BN for pre-trained vgg
        with autograd.record():
            features_y = vgg(output.data())
            content_loss = 2 * args.content_weight * mse_loss(features_y[1], f_xc_c)
            style_loss = 0.
            for m in range(len(features_y)):
                gram_y = net.gram_matrix(features_y[m])
                gram_s = gram_style[m]
                style_loss = style_loss + 2 * args.style_weight * mse_loss(gram_y, gram_s)
            total_loss = content_loss + style_loss
            total_loss.backward()

        trainer.step(1)
        if (e + 1) % args.log_interval == 0:
            print('loss:{:.2f}'.format(total_loss.asnumpy()[0]))

    # save the image
    output = utils.add_imagenet_mean_batch(output.data())
    utils.tensor_save_bgrimage(output[0], args.output_image, args.cuda)