Python utils.get_files() Examples
The following are 11
code examples of utils.get_files().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: train.py From AdaIN-TF with MIT License | 6 votes |
def batch_gen(folder, batch_shape): '''Resize images to 512, randomly crop a 256 square, and normalize''' files = np.asarray(get_files(folder)) while True: X_batch = np.zeros(batch_shape, dtype=np.float32) idx = 0 while idx < batch_shape[0]: # Build batch sample by sample try: f = np.random.choice(files) X_batch[idx] = get_img_random_crop(f, resize=512, crop=256).astype(np.float32) X_batch[idx] /= 255. # Normalize between [0,1] assert(not np.isnan(X_batch[idx].min())) except Exception as e: # Do not increment idx if we failed print(e) continue idx += 1 yield X_batch
Example #2
Source File: validate.py From Processing with MIT License | 6 votes |
def validate(schema, jsonfiles): """Validate a JSON files against a JSON schema. \b SCHEMA: JSON schema to validate against. Required. JSONFILE: JSON files to validate. Required. """ schema = json.loads(schema.read()) success = True for path in utils.get_files(jsonfiles): with open(path) as f: try: jsonfile = json.loads(f.read()) except ValueError: logging.error("Error loading json file " + path) raise Exception("Invalid json file") try: jsonschema.validate(jsonfile, schema) except Exception as e: success = False logging.error("Error validating file " + path) logging.error(str(e)) if not success: sys.exit(-1)
Example #3
Source File: train.py From WCT-TF with MIT License | 6 votes |
def batch_gen(folder, batch_shape): '''Resize images to 512, randomly crop a 256 square, and normalize''' files = np.asarray(get_files(folder)) while True: X_batch = np.zeros(batch_shape, dtype=np.float32) idx = 0 while idx < batch_shape[0]: # Build batch sample by sample try: f = np.random.choice(files) X_batch[idx] = get_img_random_crop(f, resize=512, crop=256).astype(np.float32) X_batch[idx] /= 255. # Normalize between [0,1] assert(not np.isnan(X_batch[idx].min())) except Exception as e: # Do not increment idx if we failed print(e) continue idx += 1 yield X_batch
Example #4
Source File: train_network.py From fast-style-transfer with GNU General Public License v3.0 | 5 votes |
def main(): parser = build_parser() options = parser.parse_args() check_opts(options) style_image = utils.load_image(options.style) style_image = np.ndarray.reshape(style_image, (1,) + style_image.shape) content_targets = utils.get_files(options.train_path) content_shape = utils.load_image(content_targets[0]).shape device = '/gpu:0' if options.use_gpu else '/cpu:0' style_transfer = FastStyleTransfer( vgg_path=VGG_PATH, style_image=style_image, content_shape=content_shape, content_weight=options.content_weight, style_weight=options.style_weight, tv_weight=options.style_weight, batch_size=options.batch_size, device=device) for iteration, network, first_image, losses in style_transfer.train( content_training_images=content_targets, learning_rate=options.learning_rate, epochs=options.epochs, checkpoint_iterations=options.checkpoint_iterations ): print_losses(losses) saver = tf.train.Saver() if (iteration % 100 == 0): saver.save(network, opts.save_path + '/fast_style_network.ckpt') saver.save(network, opts.save_path + '/fast_style_network.ckpt')
Example #5
Source File: webcam.py From AdaIN-TF with MIT License | 5 votes |
def __init__(self, style_path, img_size=512, scale=1, alpha=1, interpolate=False): self.style_imgs = get_files(style_path) # Create room for two styles for interpolation self.style_rgbs = [None, None] self.img_size = img_size self.crop_size = 256 self.scale = scale self.alpha = alpha cv2.namedWindow('Style Controls') if len(self.style_imgs) > 1: # Select style image by index cv2.createTrackbar('index','Style Controls', 0, len(self.style_imgs)-1, self.set_idx) # Blend param for AdaIN transform cv2.createTrackbar('alpha','Style Controls', 100, 100, self.set_alpha) # Resize style to this size before cropping cv2.createTrackbar('size','Style Controls', img_size, 2048, self.set_size) # Size of square crop box for style cv2.createTrackbar('crop size','Style Controls', 256, 2048, self.set_crop_size) # Scale the content before processing cv2.createTrackbar('scale','Style Controls', int(scale*100), 200, self.set_scale) self.set_style(random=True, window='Style Controls', style_idx=0) if interpolate: # Create a window to show second style image for interpolation cv2.namedWindow('style2') self.interp_weight = 1. cv2.createTrackbar('interpolation','Style Controls', 100, 100, self.set_interp) self.set_style(random=True, style_idx=1, window='style2')
Example #6
Source File: validate_paths.py From Processing with MIT License | 5 votes |
def validate_path(schema, jsonfiles): schema = json.loads(schema.read()) for path in utils.get_files(jsonfiles): path_components = utils.get_path_parts(path) regex = schema[path_components[0]] if not re.compile(regex).match(path): raise AssertionError('Path "%s" does not match spec "%s"' % (path, regex))
Example #7
Source File: vault.py From ansible-toolkit with GNU General Public License v3.0 | 5 votes |
def backup_all(password_file=None): for file_ in get_files('.'): backup(file_, password_file)
Example #8
Source File: vault.py From ansible-toolkit with GNU General Public License v3.0 | 5 votes |
def restore_all(password_file=None): for file_ in get_files(ATK_VAULT): if os.path.basename(file_) == 'encrypted': # Get the path without the atk vault base and encrypted filename original_path = os.path.join(*split_path(file_)[1:-1]) restore(original_path, password_file)
Example #9
Source File: webcam.py From WCT-TF with MIT License | 5 votes |
def __init__(self, style_path, img_size=512, crop_size=512, scale=1, alpha=1, swap5=False, ss_alpha=1, passes=1): if os.path.isdir(style_path): self.style_imgs = get_files(style_path) else: self.style_imgs = [style_path] # Single image instead of folder self.style_rgb = None self.img_size = img_size self.crop_size = crop_size self.scale = scale self.alpha = alpha self.ss_alpha = ss_alpha self.passes = passes cv2.namedWindow('Style Controls') if len(self.style_imgs) > 1: # Select style image by index cv2.createTrackbar('Index','Style Controls', 0, len(self.style_imgs)-1, self.set_idx) # Blend param for WCT/AdaIN transform cv2.createTrackbar('WCT/AdaIN alpha','Style Controls', int(self.alpha*100), 100, self.set_alpha) # Separate blend setting for style-swap cv2.createTrackbar('Style-swap alpha','Style Controls', int(self.ss_alpha*100), 100, self.set_ss_alpha) # Resize style to this size before cropping cv2.createTrackbar('Style size','Style Controls', self.img_size, 1280, self.set_size) # Size of square crop box for style cv2.createTrackbar('Style crop','Style Controls', self.crop_size, 1280, self.set_crop_size) # Scale the content before processing cv2.createTrackbar('Content scale','Style Controls', int(self.scale*100), 200, self.set_scale) # Num times to repeat the stylization pipeline cv2.createTrackbar('# of passes','Style Controls', self.passes, 5, self.set_passes) self.set_style(random=True, window='Style Controls')
Example #10
Source File: vectorTiling.py From Processing with MIT License | 4 votes |
def vectorTiling(output, sources, catalog, min_zoom, max_zoom, layer): """ Generate an MBTiles file of vector tiles from the output of an OpenBounds project. \b PARAMS: - sources : A directory containing geojson files, or a list of geojson files" - output : file.mbtiles for the generated data """ if os.path.exists(output): logging.error("Error, output path already exists") sys.exit(-1) if catalog: with open(catalog, "rb") as f: geojson = json.load(f) source_paths = [item["properties"]["path"] for item in geojson["features"]] else: source_paths = [] for arg in sources: for item in utils.get_files(arg): if ( os.path.splitext(item)[1] == ".geojson" and os.path.basename(item) != "catalog.geojson" ): source_paths.append(item) logging.info("{} geojson files found".format(len(source_paths))) command = ( "tippecanoe -o " + output + " " + " ".join(source_paths) + " --no-progress-indicator " + " --no-polygon-splitting " + "--coalesce --reverse --reorder " + "--detect-shared-borders " # try really hard to coalesce polygons with the same properties + " -l " # Avoid small gaps between polygons when simplifying + layer + " -z {} -Z {}".format(max_zoom, min_zoom) # force to use a single layer ) logging.info(command) subprocess.call(command, shell=True)
Example #11
Source File: run_train.py From tensorflow-fast-style-transfer with Apache License 2.0 | 4 votes |
def main(): # parse arguments args = parse_args() if args is None: exit() # initiate VGG19 model model_file_path = args.vgg_model + '/' + vgg19.MODEL_FILE_NAME vgg_net = vgg19.VGG19(model_file_path) # get file list for training content_images = utils.get_files(args.trainDB_path) # load style image style_image = utils.load_image(args.style) # create a map for content layers info CONTENT_LAYERS = {} for layer, weight in zip(args.content_layers,args.content_layer_weights): CONTENT_LAYERS[layer] = weight # create a map for style layers info STYLE_LAYERS = {} for layer, weight in zip(args.style_layers, args.style_layer_weights): STYLE_LAYERS[layer] = weight # open session sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # build the graph for train trainer = style_transfer_trainer.StyleTransferTrainer(session=sess, content_layer_ids=CONTENT_LAYERS, style_layer_ids=STYLE_LAYERS, content_images=content_images, style_image=add_one_dim(style_image), net=vgg_net, num_epochs=args.num_epochs, batch_size=args.batch_size, content_weight=args.content_weight, style_weight=args.style_weight, tv_weight=args.tv_weight, learn_rate=args.learn_rate, save_path=args.output, check_period=args.checkpoint_every, test_image=args.test, max_size=args.max_size, ) # launch the graph in a session trainer.train() # close session sess.close()