Python utils.get_files() Examples

The following are 11 code examples of utils.get_files(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module utils , or try the search function .
Example #1
Source File: train.py    From AdaIN-TF with MIT License 6 votes vote down vote up
def batch_gen(folder, batch_shape):
    '''Resize images to 512, randomly crop a 256 square, and normalize'''
    files = np.asarray(get_files(folder))
    while True:
        X_batch = np.zeros(batch_shape, dtype=np.float32)

        idx = 0

        while idx < batch_shape[0]:  # Build batch sample by sample
            try:
                f = np.random.choice(files)

                X_batch[idx] = get_img_random_crop(f, resize=512, crop=256).astype(np.float32)
                X_batch[idx] /= 255.    # Normalize between [0,1]
                
                assert(not np.isnan(X_batch[idx].min()))
            except Exception as e:
                # Do not increment idx if we failed 
                print(e)
                continue
            idx += 1

        yield X_batch 
Example #2
Source File: validate.py    From Processing with MIT License 6 votes vote down vote up
def validate(schema, jsonfiles):
    """Validate a JSON files against a JSON schema.

    \b
    SCHEMA: JSON schema to validate against. Required.
    JSONFILE: JSON files to validate. Required.
    """
    schema = json.loads(schema.read())
    success = True
    for path in utils.get_files(jsonfiles):
        with open(path) as f:
            try:
                jsonfile = json.loads(f.read())
            except ValueError:
                logging.error("Error loading json file " + path)
                raise Exception("Invalid json file")
        try:
            jsonschema.validate(jsonfile, schema)
        except Exception as e:
            success = False
            logging.error("Error validating file " + path)
            logging.error(str(e))

    if not success:
        sys.exit(-1) 
Example #3
Source File: train.py    From WCT-TF with MIT License 6 votes vote down vote up
def batch_gen(folder, batch_shape):
    '''Resize images to 512, randomly crop a 256 square, and normalize'''
    files = np.asarray(get_files(folder))
    while True:
        X_batch = np.zeros(batch_shape, dtype=np.float32)

        idx = 0

        while idx < batch_shape[0]:  # Build batch sample by sample
            try:
                f = np.random.choice(files)

                X_batch[idx] = get_img_random_crop(f, resize=512, crop=256).astype(np.float32)
                X_batch[idx] /= 255.    # Normalize between [0,1]
                
                assert(not np.isnan(X_batch[idx].min()))
            except Exception as e:
                # Do not increment idx if we failed 
                print(e)
                continue
            idx += 1

        yield X_batch 
Example #4
Source File: train_network.py    From fast-style-transfer with GNU General Public License v3.0 5 votes vote down vote up
def main():
    parser = build_parser()
    options = parser.parse_args()
    check_opts(options)

    style_image = utils.load_image(options.style)
    style_image = np.ndarray.reshape(style_image, (1,) + style_image.shape)

    content_targets = utils.get_files(options.train_path)
    content_shape = utils.load_image(content_targets[0]).shape

    device = '/gpu:0' if options.use_gpu else '/cpu:0'

    style_transfer = FastStyleTransfer(
        vgg_path=VGG_PATH,
        style_image=style_image,
        content_shape=content_shape,
        content_weight=options.content_weight,
        style_weight=options.style_weight,
        tv_weight=options.style_weight,
        batch_size=options.batch_size,
        device=device)

    for iteration, network, first_image, losses in style_transfer.train(
        content_training_images=content_targets,
        learning_rate=options.learning_rate,
        epochs=options.epochs,
        checkpoint_iterations=options.checkpoint_iterations
    ):
        print_losses(losses)

        saver = tf.train.Saver()
        if (iteration % 100 == 0):
            saver.save(network, opts.save_path + '/fast_style_network.ckpt')

        saver.save(network, opts.save_path + '/fast_style_network.ckpt') 
Example #5
Source File: webcam.py    From AdaIN-TF with MIT License 5 votes vote down vote up
def __init__(self, style_path, img_size=512, scale=1, alpha=1, interpolate=False):
        self.style_imgs = get_files(style_path)

        # Create room for two styles for interpolation
        self.style_rgbs = [None, None]

        self.img_size = img_size
        self.crop_size = 256
        self.scale = scale
        self.alpha = alpha

        cv2.namedWindow('Style Controls')
        if len(self.style_imgs) > 1:
            # Select style image by index
            cv2.createTrackbar('index','Style Controls', 0, len(self.style_imgs)-1, self.set_idx)
        
        # Blend param for AdaIN transform
        cv2.createTrackbar('alpha','Style Controls', 100, 100, self.set_alpha)

        # Resize style to this size before cropping
        cv2.createTrackbar('size','Style Controls', img_size, 2048, self.set_size)

        # Size of square crop box for style
        cv2.createTrackbar('crop size','Style Controls', 256, 2048, self.set_crop_size)

        # Scale the content before processing
        cv2.createTrackbar('scale','Style Controls', int(scale*100), 200, self.set_scale)

        self.set_style(random=True, window='Style Controls', style_idx=0)

        if interpolate:
            # Create a window to show second style image for interpolation
            cv2.namedWindow('style2')
            self.interp_weight = 1.
            cv2.createTrackbar('interpolation','Style Controls', 100, 100, self.set_interp)
            self.set_style(random=True, style_idx=1, window='style2') 
Example #6
Source File: validate_paths.py    From Processing with MIT License 5 votes vote down vote up
def validate_path(schema, jsonfiles):
    schema = json.loads(schema.read())

    for path in utils.get_files(jsonfiles):
        path_components = utils.get_path_parts(path)

        regex = schema[path_components[0]]
        if not re.compile(regex).match(path):
            raise AssertionError('Path "%s" does not match spec "%s"' % (path, regex)) 
Example #7
Source File: vault.py    From ansible-toolkit with GNU General Public License v3.0 5 votes vote down vote up
def backup_all(password_file=None):
    for file_ in get_files('.'):
        backup(file_, password_file) 
Example #8
Source File: vault.py    From ansible-toolkit with GNU General Public License v3.0 5 votes vote down vote up
def restore_all(password_file=None):
    for file_ in get_files(ATK_VAULT):
        if os.path.basename(file_) == 'encrypted':

            # Get the path without the atk vault base and encrypted filename
            original_path = os.path.join(*split_path(file_)[1:-1])
            restore(original_path, password_file) 
Example #9
Source File: webcam.py    From WCT-TF with MIT License 5 votes vote down vote up
def __init__(self, style_path, img_size=512, crop_size=512, scale=1, alpha=1, swap5=False, ss_alpha=1, passes=1):
        if os.path.isdir(style_path):
            self.style_imgs = get_files(style_path)
        else:
            self.style_imgs = [style_path]  # Single image instead of folder

        self.style_rgb = None

        self.img_size = img_size
        self.crop_size = crop_size
        self.scale = scale
        self.alpha = alpha
        self.ss_alpha = ss_alpha
        self.passes = passes

        cv2.namedWindow('Style Controls')
        if len(self.style_imgs) > 1:
            # Select style image by index
            cv2.createTrackbar('Index','Style Controls', 0, len(self.style_imgs)-1, self.set_idx)
        
        # Blend param for WCT/AdaIN transform
        cv2.createTrackbar('WCT/AdaIN alpha','Style Controls', int(self.alpha*100), 100, self.set_alpha)

        # Separate blend setting for style-swap
        cv2.createTrackbar('Style-swap alpha','Style Controls', int(self.ss_alpha*100), 100, self.set_ss_alpha)

        # Resize style to this size before cropping
        cv2.createTrackbar('Style size','Style Controls', self.img_size, 1280, self.set_size)

        # Size of square crop box for style
        cv2.createTrackbar('Style crop','Style Controls', self.crop_size, 1280, self.set_crop_size)

        # Scale the content before processing
        cv2.createTrackbar('Content scale','Style Controls', int(self.scale*100), 200, self.set_scale)

        # Num times to repeat the stylization pipeline
        cv2.createTrackbar('# of passes','Style Controls', self.passes, 5, self.set_passes)

        self.set_style(random=True, window='Style Controls') 
Example #10
Source File: vectorTiling.py    From Processing with MIT License 4 votes vote down vote up
def vectorTiling(output, sources, catalog, min_zoom, max_zoom, layer):
    """ Generate an MBTiles file of vector tiles from the output of an OpenBounds project.

    \b
    PARAMS: 
        - sources : A directory containing geojson files, or a list of geojson files"
        - output : file.mbtiles for the generated data 
    """

    if os.path.exists(output):
        logging.error("Error, output path already exists")
        sys.exit(-1)

    if catalog:
        with open(catalog, "rb") as f:
            geojson = json.load(f)
        source_paths = [item["properties"]["path"] for item in geojson["features"]]
    else:
        source_paths = []
        for arg in sources:
            for item in utils.get_files(arg):
                if (
                    os.path.splitext(item)[1] == ".geojson"
                    and os.path.basename(item) != "catalog.geojson"
                ):
                    source_paths.append(item)

    logging.info("{} geojson files found".format(len(source_paths)))

    command = (
        "tippecanoe -o "
        + output
        + " "
        + " ".join(source_paths)
        + " --no-progress-indicator "
        + " --no-polygon-splitting "
        + "--coalesce --reverse --reorder "
        + "--detect-shared-borders "  # try really hard to coalesce polygons with the same properties
        + " -l "  # Avoid small gaps between polygons when simplifying
        + layer
        + " -z {} -Z {}".format(max_zoom, min_zoom)  # force to use a single layer
    )
    logging.info(command)
    subprocess.call(command, shell=True) 
Example #11
Source File: run_train.py    From tensorflow-fast-style-transfer with Apache License 2.0 4 votes vote down vote up
def main():

    # parse arguments
    args = parse_args()
    if args is None:
        exit()

    # initiate VGG19 model
    model_file_path = args.vgg_model + '/' + vgg19.MODEL_FILE_NAME
    vgg_net = vgg19.VGG19(model_file_path)

    # get file list for training
    content_images = utils.get_files(args.trainDB_path)

    # load style image
    style_image = utils.load_image(args.style)

    # create a map for content layers info
    CONTENT_LAYERS = {}
    for layer, weight in zip(args.content_layers,args.content_layer_weights):
        CONTENT_LAYERS[layer] = weight

    # create a map for style layers info
    STYLE_LAYERS = {}
    for layer, weight in zip(args.style_layers, args.style_layer_weights):
        STYLE_LAYERS[layer] = weight

    # open session
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))

    # build the graph for train
    trainer = style_transfer_trainer.StyleTransferTrainer(session=sess,
                                                          content_layer_ids=CONTENT_LAYERS,
                                                          style_layer_ids=STYLE_LAYERS,
                                                          content_images=content_images,
                                                          style_image=add_one_dim(style_image),
                                                          net=vgg_net,
                                                          num_epochs=args.num_epochs,
                                                          batch_size=args.batch_size,
                                                          content_weight=args.content_weight,
                                                          style_weight=args.style_weight,
                                                          tv_weight=args.tv_weight,
                                                          learn_rate=args.learn_rate,
                                                          save_path=args.output,
                                                          check_period=args.checkpoint_every,
                                                          test_image=args.test,
                                                          max_size=args.max_size,
                                                          )
    # launch the graph in a session
    trainer.train()

    # close session
    sess.close()