Python utils.load_images() Examples
The following are 2
code examples of utils.load_images().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: birads_prediction_torch.py From BIRADS_classifier with BSD 2-Clause "Simplified" License | 4 votes |
def inference(parameters, verbose=True): """ Function that creates a model, loads the parameters, and makes a prediction :param parameters: dictionary of parameters :param verbose: Whether to print predicted probabilities :return: Predicted probabilities for each class """ # resolve device device = torch.device( "cuda:{}".format(parameters["gpu_number"]) if parameters["device_type"] == "gpu" else "cpu" ) # construct models model = models.BaselineBreastModel(device, nodropout_probability=1.0, gaussian_noise_std=0.0).to(device) model.load_state_dict(torch.load(parameters["model_path"])) # load input images and prepare data datum_l_cc = utils.load_images(parameters['image_path'], 'L-CC') datum_r_cc = utils.load_images(parameters['image_path'], 'R-CC') datum_l_mlo = utils.load_images(parameters['image_path'], 'L-MLO') datum_r_mlo = utils.load_images(parameters['image_path'], 'R-MLO') x = { "L-CC": torch.Tensor(datum_l_cc).permute(0, 3, 1, 2).to(device), "L-MLO": torch.Tensor(datum_l_mlo).permute(0, 3, 1, 2).to(device), "R-CC": torch.Tensor(datum_r_cc).permute(0, 3, 1, 2).to(device), "R-MLO": torch.Tensor(datum_r_mlo).permute(0, 3, 1, 2).to(device), } # run prediction with torch.no_grad(): prediction_birads = model(x).cpu().numpy() if verbose: # nicely prints out the predictions birads0_prob = prediction_birads[0][0] birads1_prob = prediction_birads[0][1] birads2_prob = prediction_birads[0][2] print('BI-RADS prediction:\n' + '\tBI-RADS 0:\t' + str(birads0_prob) + '\n' + '\tBI-RADS 1:\t' + str(birads1_prob) + '\n' + '\tBI-RADS 2:\t' + str(birads2_prob)) return prediction_birads[0]
Example #2
Source File: density_model_torch.py From breast_density_classifier with BSD 2-Clause "Simplified" License | 4 votes |
def inference(parameters, verbose=True): # resolve device device = torch.device( "cuda:{}".format(parameters["gpu_number"]) if parameters["device_type"] == "gpu" else "cpu" ) # load input images datum_l_cc = utils.load_images(parameters['image_path'], 'L-CC') datum_r_cc = utils.load_images(parameters['image_path'], 'R-CC') datum_l_mlo = utils.load_images(parameters['image_path'], 'L-MLO') datum_r_mlo = utils.load_images(parameters['image_path'], 'R-MLO') # construct models and prepare data if parameters["model_type"] == 'cnn': model = models.BaselineBreastModel(device, nodropout_probability=1.0, gaussian_noise_std=0.0).to(device) model.load_state_dict(torch.load(parameters["model_path"])) x = { "L-CC": torch.Tensor(datum_l_cc).permute(0, 3, 1, 2).to(device), "L-MLO": torch.Tensor(datum_l_mlo).permute(0, 3, 1, 2).to(device), "R-CC": torch.Tensor(datum_r_cc).permute(0, 3, 1, 2).to(device), "R-MLO": torch.Tensor(datum_r_mlo).permute(0, 3, 1, 2).to(device), } elif parameters["model_type"] == 'histogram': model = models.BaselineHistogramModel(num_bins=parameters["bins_histogram"]).to(device) model.load_state_dict(torch.load(parameters["model_path"])) x = torch.Tensor(utils.histogram_features_generator([ datum_l_cc, datum_r_cc, datum_l_mlo, datum_r_mlo ], parameters)).to(device) else: raise RuntimeError(parameters["model_type"]) # run prediction with torch.no_grad(): prediction_density = model(x).cpu().numpy() if verbose: # nicely prints out the predictions print('Density prediction:\n' '\tAlmost entirely fatty (0):\t\t\t' + str(prediction_density[0, 0]) + '\n' '\tScattered areas of fibroglandular density (1):\t' + str(prediction_density[0, 1]) + '\n' '\tHeterogeneously dense (2):\t\t\t' + str(prediction_density[0, 2]) + '\n' '\tExtremely dense (3):\t\t\t\t' + str(prediction_density[0, 3]) + '\n') return prediction_density[0]