Python utils.strLabelConverter() Examples
The following are 5
code examples of utils.strLabelConverter().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: main.py From ICDAR-2019-SROIE with MIT License | 6 votes |
def predict_this_box(image, model, alphabet): converter = utils.strLabelConverter(alphabet) transformer = dataset.resizeNormalize((200, 32)) image = transformer(image) if torch.cuda.is_available(): image = image.cuda() image = image.view(1, *image.size()) image = Variable(image) model.eval() preds = model(image) _, preds = preds.max(2) preds = preds.transpose(1, 0).contiguous().view(-1) preds_size = Variable(torch.IntTensor([preds.size(0)])) raw_pred = converter.decode(preds.data, preds_size.data, raw=True) sim_pred = converter.decode(preds.data, preds_size.data, raw=False) print('%-30s => %-30s' % (raw_pred, sim_pred)) return sim_pred
Example #2
Source File: predict.py From ctpn-crnn with MIT License | 6 votes |
def crnn_recognition(cropped_image, model): converter = utils.strLabelConverter(alphabet) image = cropped_image.convert('L') ## # w = int(image.size[0] / (280 * 1.0 / 160)) transformer = dataset.resizeNormalize((280, 32)) image = transformer(image) # if torch.cuda.is_available(): # image = image.cuda() image = image.view(1, *image.size()) image = Variable(image) model.eval() preds = model(image) _, preds = preds.max(2) preds = preds.transpose(1, 0).contiguous().view(-1) preds_size = Variable(torch.IntTensor([preds.size(0)])) sim_pred = converter.decode(preds.data, preds_size.data, raw=False) print('results: {0}'.format(sim_pred)) return sim_pred
Example #3
Source File: test_utils.py From crnn.pytorch with MIT License | 5 votes |
def checkConverter(self): encoder = utils.strLabelConverter('abcdefghijklmnopqrstuvwxyz') # Encode # trivial mode result = encoder.encode('efa') target = (torch.IntTensor([5, 6, 1]), torch.IntTensor([3])) self.assertTrue(equal(result, target)) # batch mode result = encoder.encode(['efa', 'ab']) target = (torch.IntTensor([5, 6, 1, 1, 2]), torch.IntTensor([3, 2])) self.assertTrue(equal(result, target)) # Decode # trivial mode result = encoder.decode( torch.IntTensor([5, 6, 1]), torch.IntTensor([3])) target = 'efa' self.assertTrue(equal(result, target)) # replicate mode result = encoder.decode( torch.IntTensor([5, 5, 0, 1]), torch.IntTensor([4])) target = 'ea' self.assertTrue(equal(result, target)) # raise AssertionError def f(): result = encoder.decode( torch.IntTensor([5, 5, 0, 1]), torch.IntTensor([3])) self.assertRaises(AssertionError, f) # batch mode result = encoder.decode( torch.IntTensor([5, 6, 1, 1, 2]), torch.IntTensor([3, 2])) target = ['efa', 'ab'] self.assertTrue(equal(result, target))
Example #4
Source File: test_utils.py From crnn with MIT License | 5 votes |
def checkConverter(self): encoder = utils.strLabelConverter('abcdefghijklmnopqrstuvwxyz') # Encode # trivial mode result = encoder.encode('efa') target = (torch.IntTensor([5, 6, 1]), torch.IntTensor([3])) self.assertTrue(equal(result, target)) # batch mode result = encoder.encode(['efa', 'ab']) target = (torch.IntTensor([5, 6, 1, 1, 2]), torch.IntTensor([3, 2])) self.assertTrue(equal(result, target)) # Decode # trivial mode result = encoder.decode( torch.IntTensor([5, 6, 1]), torch.IntTensor([3])) target = 'efa' self.assertTrue(equal(result, target)) # replicate mode result = encoder.decode( torch.IntTensor([5, 5, 0, 1]), torch.IntTensor([4])) target = 'ea' self.assertTrue(equal(result, target)) # raise AssertionError def f(): result = encoder.decode( torch.IntTensor([5, 5, 0, 1]), torch.IntTensor([3])) self.assertRaises(AssertionError, f) # batch mode result = encoder.decode( torch.IntTensor([5, 6, 1, 1, 2]), torch.IntTensor([3, 2])) target = ['efa', 'ab'] self.assertTrue(equal(result, target))
Example #5
Source File: test_utils.py From basicOCR with GNU General Public License v3.0 | 5 votes |
def checkConverter(self): encoder = utils.strLabelConverter('abcdefghijklmnopqrstuvwxyz') # Encode # trivial mode result = encoder.encode('efa') target = (torch.IntTensor([5, 6, 1]), torch.IntTensor([3])) self.assertTrue(equal(result, target)) # batch mode result = encoder.encode(['efa', 'ab']) target = (torch.IntTensor([5, 6, 1, 1, 2]), torch.IntTensor([3, 2])) self.assertTrue(equal(result, target)) # Decode # trivial mode result = encoder.decode( torch.IntTensor([5, 6, 1]), torch.IntTensor([3])) target = 'efa' self.assertTrue(equal(result, target)) # replicate mode result = encoder.decode( torch.IntTensor([5, 5, 0, 1]), torch.IntTensor([4])) target = 'ea' self.assertTrue(equal(result, target)) # raise AssertionError def f(): result = encoder.decode( torch.IntTensor([5, 5, 0, 1]), torch.IntTensor([3])) self.assertRaises(AssertionError, f) # batch mode result = encoder.decode( torch.IntTensor([5, 6, 1, 1, 2]), torch.IntTensor([3, 2])) target = ['efa', 'ab'] self.assertTrue(equal(result, target))