Python tensorflow.python.lib.io.file_io.is_directory() Examples
The following are 16
code examples of tensorflow.python.lib.io.file_io.is_directory().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.lib.io.file_io
, or try the search function
.
Example #1
Source File: util.py From pydatalab with Apache License 2.0 | 6 votes |
def _recursive_copy(src_dir, dest_dir): """Copy the contents of src_dir into the folder dest_dir. Args: src_dir: gsc or local path. dest_dir: gcs or local path. When called, dest_dir should exist. """ src_dir = python_portable_string(src_dir) dest_dir = python_portable_string(dest_dir) file_io.recursive_create_dir(dest_dir) for file_name in file_io.list_directory(src_dir): old_path = os.path.join(src_dir, file_name) new_path = os.path.join(dest_dir, file_name) if file_io.is_directory(old_path): _recursive_copy(old_path, new_path) else: file_io.copy(old_path, new_path, overwrite=True)
Example #2
Source File: task.py From pydatalab with Apache License 2.0 | 6 votes |
def recursive_copy(src_dir, dest_dir): """Copy the contents of src_dir into the folder dest_dir. Args: src_dir: gsc or local path. dest_dir: gcs or local path. """ file_io.recursive_create_dir(dest_dir) for file_name in file_io.list_directory(src_dir): old_path = os.path.join(src_dir, file_name) new_path = os.path.join(dest_dir, file_name) if file_io.is_directory(old_path): recursive_copy(old_path, new_path) else: file_io.copy(old_path, new_path, overwrite=True)
Example #3
Source File: task.py From pydatalab with Apache License 2.0 | 6 votes |
def recursive_copy(src_dir, dest_dir): """Copy the contents of src_dir into the folder dest_dir. Args: src_dir: gsc or local path. dest_dir: gcs or local path. """ file_io.recursive_create_dir(dest_dir) for file_name in file_io.list_directory(src_dir): old_path = os.path.join(src_dir, file_name) new_path = os.path.join(dest_dir, file_name) if file_io.is_directory(old_path): recursive_copy(old_path, new_path) else: file_io.copy(old_path, new_path, overwrite=True)
Example #4
Source File: projector_plugin.py From lambda-packs with MIT License | 5 votes |
def _serve_bookmarks(self, request): run = request.args.get('run') if not run: return Respond(request, 'query parameter "run" is required', 'text/plain', 400) name = request.args.get('name') if name is None: return Respond(request, 'query parameter "name" is required', 'text/plain', 400) if run not in self.configs: return Respond(request, 'Unknown run: "%s"' % run, 'text/plain', 400) config = self.configs[run] fpath = self._get_bookmarks_file_for_tensor(name, config) if not fpath: return Respond( request, 'No bookmarks file found for tensor "%s" in the config file "%s"' % (name, self.config_fpaths[run]), 'text/plain', 400) fpath = _rel_to_abs_asset_path(fpath, self.config_fpaths[run]) if not file_io.file_exists(fpath) or file_io.is_directory(fpath): return Respond(request, '"%s" not found, or is not a file' % fpath, 'text/plain', 400) bookmarks_json = None with file_io.FileIO(fpath, 'rb') as f: bookmarks_json = f.read() return Respond(request, bookmarks_json, 'application/json')
Example #5
Source File: projector_plugin.py From lambda-packs with MIT License | 5 votes |
def _serve_sprite_image(self, request): run = request.args.get('run') if not run: return Respond(request, 'query parameter "run" is required', 'text/plain', 400) name = request.args.get('name') if name is None: return Respond(request, 'query parameter "name" is required', 'text/plain', 400) if run not in self.configs: return Respond(request, 'Unknown run: "%s"' % run, 'text/plain', 400) config = self.configs[run] embedding_info = self._get_embedding(name, config) if not embedding_info or not embedding_info.sprite.image_path: return Respond( request, 'No sprite image file found for tensor "%s" in the config file "%s"' % (name, self.config_fpaths[run]), 'text/plain', 400) fpath = os.path.expanduser(embedding_info.sprite.image_path) fpath = _rel_to_abs_asset_path(fpath, self.config_fpaths[run]) if not file_io.file_exists(fpath) or file_io.is_directory(fpath): return Respond(request, '"%s" does not exist or is directory' % fpath, 'text/plain', 400) f = file_io.FileIO(fpath, 'rb') encoded_image_string = f.read() f.close() image_type = imghdr.what(None, encoded_image_string) mime_type = _IMGHDR_TO_MIMETYPE.get(image_type, _DEFAULT_IMAGE_MIMETYPE) return Respond(request, encoded_image_string, mime_type)
Example #6
Source File: plugin.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _serve_bookmarks(self, request, query_params): run = query_params.get('run') if not run: request.respond('query parameter "run" is required', 'text/plain', 400) return name = query_params.get('name') if name is None: request.respond('query parameter "name" is required', 'text/plain', 400) return if run not in self.configs: request.respond('Unknown run: %s' % run, 'text/plain', 400) return config = self.configs[run] fpath = self._get_bookmarks_file_for_tensor(name, config) if not fpath: request.respond( 'No bookmarks file found for tensor %s in the config file %s' % (name, self.config_fpaths[run]), 'text/plain', 400) return if not file_io.file_exists(fpath) or file_io.is_directory(fpath): request.respond('%s is not a file' % fpath, 'text/plain', 400) return bookmarks_json = None with file_io.FileIO(fpath, 'r') as f: bookmarks_json = f.read() request.respond(bookmarks_json, 'application/json')
Example #7
Source File: plugin.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _serve_sprite_image(self, request, query_params): run = query_params.get('run') if not run: request.respond('query parameter "run" is required', 'text/plain', 400) return name = query_params.get('name') if name is None: request.respond('query parameter "name" is required', 'text/plain', 400) return if run not in self.configs: request.respond('Unknown run: %s' % run, 'text/plain', 400) return config = self.configs[run] embedding_info = self._get_embedding(name, config) if not embedding_info or not embedding_info.sprite.image_path: request.respond( 'No sprite image file found for tensor %s in the config file %s' % (name, self.config_fpaths[run]), 'text/plain', 400) return fpath = embedding_info.sprite.image_path if not file_io.file_exists(fpath) or file_io.is_directory(fpath): request.respond( '%s does not exist or is directory' % fpath, 'text/plain', 400) return f = file_io.FileIO(fpath, 'r') encoded_image_string = f.read() f.close() image_type = imghdr.what(None, encoded_image_string) mime_type = _IMGHDR_TO_MIMETYPE.get(image_type, _DEFAULT_IMAGE_MIMETYPE) request.respond(encoded_image_string, mime_type)
Example #8
Source File: plugin.py From deep_image_model with Apache License 2.0 | 5 votes |
def _serve_bookmarks(self, request, query_params): run = query_params.get('run') if not run: request.respond('query parameter "run" is required', 'text/plain', 400) return name = query_params.get('name') if name is None: request.respond('query parameter "name" is required', 'text/plain', 400) return if run not in self.configs: request.respond('Unknown run: %s' % run, 'text/plain', 400) return config = self.configs[run] fpath = self._get_bookmarks_file_for_tensor(name, config) if not fpath: request.respond( 'No bookmarks file found for tensor %s in the config file %s' % (name, self.config_fpaths[run]), 'text/plain', 400) return if not file_io.file_exists(fpath) or file_io.is_directory(fpath): request.respond('%s is not a file' % fpath, 'text/plain', 400) return bookmarks_json = None with file_io.FileIO(fpath, 'r') as f: bookmarks_json = f.read() request.respond(bookmarks_json, 'application/json')
Example #9
Source File: plugin.py From deep_image_model with Apache License 2.0 | 5 votes |
def _serve_sprite_image(self, request, query_params): run = query_params.get('run') if not run: request.respond('query parameter "run" is required', 'text/plain', 400) return name = query_params.get('name') if name is None: request.respond('query parameter "name" is required', 'text/plain', 400) return if run not in self.configs: request.respond('Unknown run: %s' % run, 'text/plain', 400) return config = self.configs[run] embedding_info = self._get_embedding(name, config) if not embedding_info or not embedding_info.sprite.image_path: request.respond( 'No sprite image file found for tensor %s in the config file %s' % (name, self.config_fpaths[run]), 'text/plain', 400) return fpath = embedding_info.sprite.image_path if not file_io.file_exists(fpath) or file_io.is_directory(fpath): request.respond( '%s does not exist or is directory' % fpath, 'text/plain', 400) return f = file_io.FileIO(fpath, 'r') encoded_image_string = f.read() f.close() image_type = imghdr.what(None, encoded_image_string) mime_type = _IMGHDR_TO_MIMETYPE.get(image_type, _DEFAULT_IMAGE_MIMETYPE) request.respond(encoded_image_string, mime_type)
Example #10
Source File: gcs_smoke.py From deep_image_model with Apache License 2.0 | 5 votes |
def create_dir_test(): """Verifies file_io directory handling methods .""" starttime = int(round(time.time() * 1000)) dir_name = "%s/tf_gcs_test_%s" % (FLAGS.gcs_bucket_url, starttime) print("Creating dir %s" % dir_name) file_io.create_dir(dir_name) elapsed = int(round(time.time() * 1000)) - starttime print("Created directory in: %d milliseconds" % elapsed) # Check that the directory exists. dir_exists = file_io.is_directory(dir_name) print("%s directory exists: %s" % (dir_name, dir_exists)) # List contents of just created directory. print("Listing directory %s." % dir_name) starttime = int(round(time.time() * 1000)) print(file_io.list_directory(dir_name)) elapsed = int(round(time.time() * 1000)) - starttime print("Listed directory %s in %s milliseconds" % (dir_name, elapsed)) # Delete directory. print("Deleting directory %s." % dir_name) starttime = int(round(time.time() * 1000)) file_io.delete_recursively(dir_name) elapsed = int(round(time.time() * 1000)) - starttime print("Deleted directory %s in %s milliseconds" % (dir_name, elapsed))
Example #11
Source File: plugin.py From keras-lambda with MIT License | 5 votes |
def _serve_bookmarks(self, request, query_params): run = query_params.get('run') if not run: request.respond('query parameter "run" is required', 'text/plain', 400) return name = query_params.get('name') if name is None: request.respond('query parameter "name" is required', 'text/plain', 400) return if run not in self.configs: request.respond('Unknown run: %s' % run, 'text/plain', 400) return config = self.configs[run] fpath = self._get_bookmarks_file_for_tensor(name, config) if not fpath: request.respond( 'No bookmarks file found for tensor %s in the config file %s' % (name, self.config_fpaths[run]), 'text/plain', 400) return if not file_io.file_exists(fpath) or file_io.is_directory(fpath): request.respond('%s is not a file' % fpath, 'text/plain', 400) return bookmarks_json = None with file_io.FileIO(fpath, 'r') as f: bookmarks_json = f.read() request.respond(bookmarks_json, 'application/json')
Example #12
Source File: plugin.py From keras-lambda with MIT License | 5 votes |
def _serve_sprite_image(self, request, query_params): run = query_params.get('run') if not run: request.respond('query parameter "run" is required', 'text/plain', 400) return name = query_params.get('name') if name is None: request.respond('query parameter "name" is required', 'text/plain', 400) return if run not in self.configs: request.respond('Unknown run: %s' % run, 'text/plain', 400) return config = self.configs[run] embedding_info = self._get_embedding(name, config) if not embedding_info or not embedding_info.sprite.image_path: request.respond( 'No sprite image file found for tensor %s in the config file %s' % (name, self.config_fpaths[run]), 'text/plain', 400) return fpath = embedding_info.sprite.image_path if not file_io.file_exists(fpath) or file_io.is_directory(fpath): request.respond( '%s does not exist or is directory' % fpath, 'text/plain', 400) return f = file_io.FileIO(fpath, 'r') encoded_image_string = f.read() f.close() image_type = imghdr.what(None, encoded_image_string) mime_type = _IMGHDR_TO_MIMETYPE.get(image_type, _DEFAULT_IMAGE_MIMETYPE) request.respond(encoded_image_string, mime_type)
Example #13
Source File: projector_plugin.py From lambda-packs with MIT License | 4 votes |
def _serve_metadata(self, request): run = request.args.get('run') if run is None: return Respond(request, 'query parameter "run" is required', 'text/plain', 400) name = request.args.get('name') if name is None: return Respond(request, 'query parameter "name" is required', 'text/plain', 400) num_rows = _parse_positive_int_param(request, 'num_rows') if num_rows == -1: return Respond(request, 'query parameter num_rows must be integer > 0', 'text/plain', 400) if run not in self.configs: return Respond(request, 'Unknown run: "%s"' % run, 'text/plain', 400) config = self.configs[run] fpath = self._get_metadata_file_for_tensor(name, config) if not fpath: return Respond( request, 'No metadata file found for tensor "%s" in the config file "%s"' % (name, self.config_fpaths[run]), 'text/plain', 400) fpath = _rel_to_abs_asset_path(fpath, self.config_fpaths[run]) if not file_io.file_exists(fpath) or file_io.is_directory(fpath): return Respond(request, '"%s" not found, or is not a file' % fpath, 'text/plain', 400) num_header_rows = 0 with file_io.FileIO(fpath, 'r') as f: lines = [] # Stream reading the file with early break in case the file doesn't fit in # memory. for line in f: lines.append(line) if len(lines) == 1 and '\t' in lines[0]: num_header_rows = 1 if num_rows and len(lines) >= num_rows + num_header_rows: break return Respond(request, ''.join(lines), 'text/plain')
Example #14
Source File: plugin.py From auto-alt-text-lambda-api with MIT License | 4 votes |
def _serve_metadata(self, request, query_params): run = query_params.get('run') if run is None: request.respond('query parameter "run" is required', 'text/plain', 400) return name = query_params.get('name') if name is None: request.respond('query parameter "name" is required', 'text/plain', 400) return num_rows = _parse_positive_int_param(request, query_params, 'num_rows') if num_rows == -1: return if run not in self.configs: request.respond('Unknown run: %s' % run, 'text/plain', 400) return config = self.configs[run] fpath = self._get_metadata_file_for_tensor(name, config) if not fpath: request.respond( 'No metadata file found for tensor %s in the config file %s' % (name, self.config_fpaths[run]), 'text/plain', 400) return if not file_io.file_exists(fpath) or file_io.is_directory(fpath): request.respond('%s is not a file' % fpath, 'text/plain', 400) return num_header_rows = 0 with file_io.FileIO(fpath, 'r') as f: lines = [] # Stream reading the file with early break in case the file doesn't fit in # memory. for line in f: lines.append(line) if len(lines) == 1 and '\t' in lines[0]: num_header_rows = 1 if num_rows and len(lines) >= num_rows + num_header_rows: break request.respond(''.join(lines), 'text/plain')
Example #15
Source File: plugin.py From deep_image_model with Apache License 2.0 | 4 votes |
def _serve_metadata(self, request, query_params): run = query_params.get('run') if run is None: request.respond('query parameter "run" is required', 'text/plain', 400) return name = query_params.get('name') if name is None: request.respond('query parameter "name" is required', 'text/plain', 400) return num_rows = _parse_positive_int_param(request, query_params, 'num_rows') if num_rows == -1: return if run not in self.configs: request.respond('Unknown run: %s' % run, 'text/plain', 400) return config = self.configs[run] fpath = self._get_metadata_file_for_tensor(name, config) if not fpath: request.respond( 'No metadata file found for tensor %s in the config file %s' % (name, self.config_fpaths[run]), 'text/plain', 400) return if not file_io.file_exists(fpath) or file_io.is_directory(fpath): request.respond('%s is not a file' % fpath, 'text/plain', 400) return num_header_rows = 0 with file_io.FileIO(fpath, 'r') as f: lines = [] # Stream reading the file with early break in case the file doesn't fit in # memory. for line in f: lines.append(line) if len(lines) == 1 and '\t' in lines[0]: num_header_rows = 1 if num_rows and len(lines) >= num_rows + num_header_rows: break request.respond(''.join(lines), 'text/plain')
Example #16
Source File: plugin.py From keras-lambda with MIT License | 4 votes |
def _serve_metadata(self, request, query_params): run = query_params.get('run') if run is None: request.respond('query parameter "run" is required', 'text/plain', 400) return name = query_params.get('name') if name is None: request.respond('query parameter "name" is required', 'text/plain', 400) return num_rows = _parse_positive_int_param(request, query_params, 'num_rows') if num_rows == -1: return if run not in self.configs: request.respond('Unknown run: %s' % run, 'text/plain', 400) return config = self.configs[run] fpath = self._get_metadata_file_for_tensor(name, config) if not fpath: request.respond( 'No metadata file found for tensor %s in the config file %s' % (name, self.config_fpaths[run]), 'text/plain', 400) return if not file_io.file_exists(fpath) or file_io.is_directory(fpath): request.respond('%s is not a file' % fpath, 'text/plain', 400) return num_header_rows = 0 with file_io.FileIO(fpath, 'r') as f: lines = [] # Stream reading the file with early break in case the file doesn't fit in # memory. for line in f: lines.append(line) if len(lines) == 1 and '\t' in lines[0]: num_header_rows = 1 if num_rows and len(lines) >= num_rows + num_header_rows: break request.respond(''.join(lines), 'text/plain')