Python matplotlib._image.NEAREST Examples

The following are 10 code examples of matplotlib._image.NEAREST(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module matplotlib._image , or try the search function .
Example #1
Source File: image.py    From Computable with MIT License 5 votes vote down vote up
def make_image(self, magnification=1.0):
        if self._A is None:
            raise RuntimeError('You must first set the image array')

        x = self.to_rgba(self._A, bytes=True)
        self.magnification = magnification
        # if magnification is not one, we need to resize
        ismag = magnification != 1
        #if ismag: raise RuntimeError
        if ismag:
            isoutput = 0
        else:
            isoutput = 1
        im = _image.frombyte(x, isoutput)
        fc = self.figure.get_facecolor()
        im.set_bg(*mcolors.colorConverter.to_rgba(fc, 0))
        im.is_grayscale = (self.cmap.name == "gray" and
                           len(self._A.shape) == 2)

        if ismag:
            numrows, numcols = self.get_size()
            numrows *= magnification
            numcols *= magnification
            im.set_interpolation(_image.NEAREST)
            im.resize(numcols, numrows)
        if self.origin == 'upper':
            im.flipud_out()

        return im 
Example #2
Source File: image.py    From matplotlib-4-abaqus with MIT License 5 votes vote down vote up
def make_image(self, magnification=1.0):
        if self._A is None:
            raise RuntimeError('You must first set the image array')

        x = self.to_rgba(self._A, bytes=True)
        self.magnification = magnification
        # if magnification is not one, we need to resize
        ismag = magnification != 1
        #if ismag: raise RuntimeError
        if ismag:
            isoutput = 0
        else:
            isoutput = 1
        im = _image.frombyte(x, isoutput)
        fc = self.figure.get_facecolor()
        im.set_bg(*mcolors.colorConverter.to_rgba(fc, 0))
        im.is_grayscale = (self.cmap.name == "gray" and
                           len(self._A.shape) == 2)

        if ismag:
            numrows, numcols = self.get_size()
            numrows *= magnification
            numcols *= magnification
            im.set_interpolation(_image.NEAREST)
            im.resize(numcols, numrows)
        if self.origin == 'upper':
            im.flipud_out()

        return im 
Example #3
Source File: image.py    From neural-network-animation with MIT License 5 votes vote down vote up
def make_image(self, magnification=1.0):
        if self._A is None:
            raise RuntimeError('You must first set the image array')

        x = self.to_rgba(self._A, bytes=True)
        self.magnification = magnification
        # if magnification is not one, we need to resize
        ismag = magnification != 1
        #if ismag: raise RuntimeError
        if ismag:
            isoutput = 0
        else:
            isoutput = 1
        im = _image.frombyte(x, isoutput)
        fc = self.figure.get_facecolor()
        im.set_bg(*mcolors.colorConverter.to_rgba(fc, 0))
        im.is_grayscale = (self.cmap.name == "gray" and
                           len(self._A.shape) == 2)

        if ismag:
            numrows, numcols = self.get_size()
            numrows *= magnification
            numcols *= magnification
            im.set_interpolation(_image.NEAREST)
            im.resize(numcols, numrows)
        if self.origin == 'upper':
            im.flipud_out()

        return im 
Example #4
Source File: image.py    From ImageFusion with MIT License 5 votes vote down vote up
def make_image(self, magnification=1.0):
        if self._A is None:
            raise RuntimeError('You must first set the image array')

        x = self.to_rgba(self._A, bytes=True)
        self.magnification = magnification
        # if magnification is not one, we need to resize
        ismag = magnification != 1
        #if ismag: raise RuntimeError
        if ismag:
            isoutput = 0
        else:
            isoutput = 1
        im = _image.frombyte(x, isoutput)
        fc = self.figure.get_facecolor()
        im.set_bg(*mcolors.colorConverter.to_rgba(fc, 0))
        im.is_grayscale = (self.cmap.name == "gray" and
                           len(self._A.shape) == 2)

        if ismag:
            numrows, numcols = self.get_size()
            numrows *= magnification
            numcols *= magnification
            im.set_interpolation(_image.NEAREST)
            im.resize(numcols, numrows)
        if self.origin == 'upper':
            im.flipud_out()

        return im 
Example #5
Source File: image.py    From Mastering-Elasticsearch-7.0 with MIT License 4 votes vote down vote up
def composite_images(images, renderer, magnification=1.0):
    """
    Composite a number of RGBA images into one.  The images are
    composited in the order in which they appear in the `images` list.

    Parameters
    ----------
    images : list of Images
        Each must have a `make_image` method.  For each image,
        `can_composite` should return `True`, though this is not
        enforced by this function.  Each image must have a purely
        affine transformation with no shear.

    renderer : RendererBase instance

    magnification : float
        The additional magnification to apply for the renderer in use.

    Returns
    -------
    tuple : image, offset_x, offset_y
        Returns the tuple:

        - image: A numpy array of the same type as the input images.

        - offset_x, offset_y: The offset of the image (left, bottom)
          in the output figure.
    """
    if len(images) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    parts = []
    bboxes = []
    for image in images:
        data, x, y, trans = image.make_image(renderer, magnification)
        if data is not None:
            x *= magnification
            y *= magnification
            parts.append((data, x, y, image.get_alpha() or 1.0))
            bboxes.append(
                Bbox([[x, y], [x + data.shape[1], y + data.shape[0]]]))

    if len(parts) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    bbox = Bbox.union(bboxes)

    output = np.zeros(
        (int(bbox.height), int(bbox.width), 4), dtype=np.uint8)

    for data, x, y, alpha in parts:
        trans = Affine2D().translate(x - bbox.x0, y - bbox.y0)
        _image.resample(data, output, trans, _image.NEAREST,
                        resample=False, alpha=alpha)

    return output, bbox.x0 / magnification, bbox.y0 / magnification 
Example #6
Source File: image.py    From GraphicDesignPatternByPython with MIT License 4 votes vote down vote up
def composite_images(images, renderer, magnification=1.0):
    """
    Composite a number of RGBA images into one.  The images are
    composited in the order in which they appear in the `images` list.

    Parameters
    ----------
    images : list of Images
        Each must have a `make_image` method.  For each image,
        `can_composite` should return `True`, though this is not
        enforced by this function.  Each image must have a purely
        affine transformation with no shear.

    renderer : RendererBase instance

    magnification : float
        The additional magnification to apply for the renderer in use.

    Returns
    -------
    tuple : image, offset_x, offset_y
        Returns the tuple:

        - image: A numpy array of the same type as the input images.

        - offset_x, offset_y: The offset of the image (left, bottom)
          in the output figure.
    """
    if len(images) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    parts = []
    bboxes = []
    for image in images:
        data, x, y, trans = image.make_image(renderer, magnification)
        if data is not None:
            x *= magnification
            y *= magnification
            parts.append((data, x, y, image.get_alpha() or 1.0))
            bboxes.append(
                Bbox([[x, y], [x + data.shape[1], y + data.shape[0]]]))

    if len(parts) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    bbox = Bbox.union(bboxes)

    output = np.zeros(
        (int(bbox.height), int(bbox.width), 4), dtype=np.uint8)

    for data, x, y, alpha in parts:
        trans = Affine2D().translate(x - bbox.x0, y - bbox.y0)
        _image.resample(data, output, trans, _image.NEAREST,
                        resample=False, alpha=alpha)

    return output, bbox.x0 / magnification, bbox.y0 / magnification 
Example #7
Source File: image.py    From python3_ios with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def composite_images(images, renderer, magnification=1.0):
    """
    Composite a number of RGBA images into one.  The images are
    composited in the order in which they appear in the `images` list.

    Parameters
    ----------
    images : list of Images
        Each must have a `make_image` method.  For each image,
        `can_composite` should return `True`, though this is not
        enforced by this function.  Each image must have a purely
        affine transformation with no shear.

    renderer : RendererBase instance

    magnification : float
        The additional magnification to apply for the renderer in use.

    Returns
    -------
    tuple : image, offset_x, offset_y
        Returns the tuple:

        - image: A numpy array of the same type as the input images.

        - offset_x, offset_y: The offset of the image (left, bottom)
          in the output figure.
    """
    if len(images) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    parts = []
    bboxes = []
    for image in images:
        data, x, y, trans = image.make_image(renderer, magnification)
        if data is not None:
            x *= magnification
            y *= magnification
            parts.append((data, x, y, image.get_alpha() or 1.0))
            bboxes.append(
                Bbox([[x, y], [x + data.shape[1], y + data.shape[0]]]))

    if len(parts) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    bbox = Bbox.union(bboxes)

    output = np.zeros(
        (int(bbox.height), int(bbox.width), 4), dtype=np.uint8)

    for data, x, y, alpha in parts:
        trans = Affine2D().translate(x - bbox.x0, y - bbox.y0)
        _image.resample(data, output, trans, _image.NEAREST,
                        resample=False, alpha=alpha)

    return output, bbox.x0 / magnification, bbox.y0 / magnification 
Example #8
Source File: image.py    From coffeegrindsize with MIT License 4 votes vote down vote up
def composite_images(images, renderer, magnification=1.0):
    """
    Composite a number of RGBA images into one.  The images are
    composited in the order in which they appear in the `images` list.

    Parameters
    ----------
    images : list of Images
        Each must have a `make_image` method.  For each image,
        `can_composite` should return `True`, though this is not
        enforced by this function.  Each image must have a purely
        affine transformation with no shear.

    renderer : RendererBase instance

    magnification : float
        The additional magnification to apply for the renderer in use.

    Returns
    -------
    tuple : image, offset_x, offset_y
        Returns the tuple:

        - image: A numpy array of the same type as the input images.

        - offset_x, offset_y: The offset of the image (left, bottom)
          in the output figure.
    """
    if len(images) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    parts = []
    bboxes = []
    for image in images:
        data, x, y, trans = image.make_image(renderer, magnification)
        if data is not None:
            x *= magnification
            y *= magnification
            parts.append((data, x, y, image.get_alpha() or 1.0))
            bboxes.append(
                Bbox([[x, y], [x + data.shape[1], y + data.shape[0]]]))

    if len(parts) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    bbox = Bbox.union(bboxes)

    output = np.zeros(
        (int(bbox.height), int(bbox.width), 4), dtype=np.uint8)

    for data, x, y, alpha in parts:
        trans = Affine2D().translate(x - bbox.x0, y - bbox.y0)
        _image.resample(data, output, trans, _image.NEAREST,
                        resample=False, alpha=alpha)

    return output, bbox.x0 / magnification, bbox.y0 / magnification 
Example #9
Source File: image.py    From CogAlg with MIT License 4 votes vote down vote up
def composite_images(images, renderer, magnification=1.0):
    """
    Composite a number of RGBA images into one.  The images are
    composited in the order in which they appear in the `images` list.

    Parameters
    ----------
    images : list of Images
        Each must have a `make_image` method.  For each image,
        `can_composite` should return `True`, though this is not
        enforced by this function.  Each image must have a purely
        affine transformation with no shear.

    renderer : RendererBase instance

    magnification : float
        The additional magnification to apply for the renderer in use.

    Returns
    -------
    tuple : image, offset_x, offset_y
        Returns the tuple:

        - image: A numpy array of the same type as the input images.

        - offset_x, offset_y: The offset of the image (left, bottom)
          in the output figure.
    """
    if len(images) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    parts = []
    bboxes = []
    for image in images:
        data, x, y, trans = image.make_image(renderer, magnification)
        if data is not None:
            x *= magnification
            y *= magnification
            parts.append((data, x, y, image.get_alpha() or 1.0))
            bboxes.append(
                Bbox([[x, y], [x + data.shape[1], y + data.shape[0]]]))

    if len(parts) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    bbox = Bbox.union(bboxes)

    output = np.zeros(
        (int(bbox.height), int(bbox.width), 4), dtype=np.uint8)

    for data, x, y, alpha in parts:
        trans = Affine2D().translate(x - bbox.x0, y - bbox.y0)
        _image.resample(data, output, trans, _image.NEAREST,
                        resample=False, alpha=alpha)

    return output, bbox.x0 / magnification, bbox.y0 / magnification 
Example #10
Source File: image.py    From twitter-stock-recommendation with MIT License 4 votes vote down vote up
def composite_images(images, renderer, magnification=1.0):
    """
    Composite a number of RGBA images into one.  The images are
    composited in the order in which they appear in the `images` list.

    Parameters
    ----------
    images : list of Images
        Each must have a `make_image` method.  For each image,
        `can_composite` should return `True`, though this is not
        enforced by this function.  Each image must have a purely
        affine transformation with no shear.

    renderer : RendererBase instance

    magnification : float
        The additional magnification to apply for the renderer in use.

    Returns
    -------
    tuple : image, offset_x, offset_y
        Returns the tuple:

        - image: A numpy array of the same type as the input images.

        - offset_x, offset_y: The offset of the image (left, bottom)
          in the output figure.
    """
    if len(images) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    parts = []
    bboxes = []
    for image in images:
        data, x, y, trans = image.make_image(renderer, magnification)
        if data is not None:
            x *= magnification
            y *= magnification
            parts.append((data, x, y, image.get_alpha() or 1.0))
            bboxes.append(
                Bbox([[x, y], [x + data.shape[1], y + data.shape[0]]]))

    if len(parts) == 0:
        return np.empty((0, 0, 4), dtype=np.uint8), 0, 0

    bbox = Bbox.union(bboxes)

    output = np.zeros(
        (int(bbox.height), int(bbox.width), 4), dtype=np.uint8)

    for data, x, y, alpha in parts:
        trans = Affine2D().translate(x - bbox.x0, y - bbox.y0)
        _image.resample(data, output, trans, _image.NEAREST,
                        resample=False, alpha=alpha)

    return output, bbox.x0 / magnification, bbox.y0 / magnification