Python object_detection.builders.input_reader_builder.build() Examples
The following are 30
code examples of object_detection.builders.input_reader_builder.build().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.builders.input_reader_builder
, or try the search function
.
Example #1
Source File: eval.py From DOTA_models with Apache License 2.0 | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #2
Source File: eval.py From MBMD with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #3
Source File: eval.py From MBMD with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' model_config, train_config, input_config, eval_config = get_configs_from_pipeline_file() model_fn = functools.partial( build_man_model, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #4
Source File: eval.py From HereIsWally with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #5
Source File: eval.py From object_detection_kitti with Apache License 2.0 | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #6
Source File: eval.py From garbage-object-detection-tensorflow with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #7
Source File: eval.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #8
Source File: eval.py From tensorflow with BSD 2-Clause "Simplified" License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #9
Source File: eval.py From hands-detection with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #10
Source File: eval.py From moveo_ros with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #11
Source File: eval.py From object_detector_app with MIT License | 6 votes |
def main(unused_argv): assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' if FLAGS.pipeline_config_path: model_config, eval_config, input_config = get_configs_from_pipeline_file() else: model_config, eval_config, input_config = get_configs_from_multiple_files() model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) create_input_dict_fn = functools.partial( input_reader_builder.build, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir)
Example #12
Source File: input_reader_builder_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def test_raises_error_with_no_input_paths(self): input_reader_text_proto = """ shuffle: false num_readers: 1 load_instance_masks: true """ input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) with self.assertRaises(ValueError): input_reader_builder.build(input_reader_proto)
Example #13
Source File: input_reader_builder_test.py From hands-detection with MIT License | 5 votes |
def test_build_tf_record_input_reader(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) sv = tf.train.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) output_dict = sess.run(tensor_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0])
Example #14
Source File: input_reader_builder_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader_and_load_instance_masks(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 load_instance_masks: true tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) with tf.train.MonitoredSession() as sess: output_dict = sess.run(tensor_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0]) self.assertAllEqual( (1, 4, 5), output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
Example #15
Source File: input_reader_builder_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) with tf.train.MonitoredSession() as sess: output_dict = sess.run(tensor_dict) self.assertTrue(fields.InputDataFields.groundtruth_instance_masks not in output_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0])
Example #16
Source File: input_reader_builder_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) with tf.train.MonitoredSession() as sess: output_dict = sess.run(tensor_dict) self.assertTrue(fields.InputDataFields.groundtruth_instance_masks not in output_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0])
Example #17
Source File: input_reader_builder_test.py From AniSeg with Apache License 2.0 | 5 votes |
def test_raises_error_with_no_input_paths(self): input_reader_text_proto = """ shuffle: false num_readers: 1 load_instance_masks: true """ input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) with self.assertRaises(ValueError): input_reader_builder.build(input_reader_proto)
Example #18
Source File: input_reader_builder_test.py From AniSeg with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader_and_load_instance_masks(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 load_instance_masks: true tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) sv = tf.train.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) output_dict = sess.run(tensor_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0]) self.assertAllEqual( (1, 4, 5), output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
Example #19
Source File: input_reader_builder_test.py From AniSeg with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) sv = tf.train.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) output_dict = sess.run(tensor_dict) self.assertTrue(fields.InputDataFields.groundtruth_instance_masks not in output_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0])
Example #20
Source File: input_reader_builder_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader_and_load_instance_masks(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 load_instance_masks: true tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) with tf.train.MonitoredSession() as sess: output_dict = sess.run(tensor_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0]) self.assertAllEqual( (1, 4, 5), output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
Example #21
Source File: input_reader_builder_test.py From Elphas with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) sv = tf.train.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) output_dict = sess.run(tensor_dict) self.assertTrue(fields.InputDataFields.groundtruth_instance_masks not in output_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0])
Example #22
Source File: input_reader_builder_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader_and_load_instance_masks(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 load_instance_masks: true tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) sv = tf.train.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) output_dict = sess.run(tensor_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0]) self.assertAllEqual( (1, 4, 5), output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
Example #23
Source File: input_reader_builder_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) sv = tf.train.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) output_dict = sess.run(tensor_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0])
Example #24
Source File: input_reader_builder_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def test_raises_error_with_no_input_paths(self): input_reader_text_proto = """ shuffle: false num_readers: 1 load_instance_masks: true """ input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) with self.assertRaises(ValueError): input_reader_builder.build(input_reader_proto)
Example #25
Source File: input_reader_builder_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader_and_load_instance_masks(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 load_instance_masks: true tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) with tf.train.MonitoredSession() as sess: output_dict = sess.run(tensor_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0]) self.assertAllEqual( (1, 4, 5), output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
Example #26
Source File: input_reader_builder_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) with tf.train.MonitoredSession() as sess: output_dict = sess.run(tensor_dict) self.assertTrue(fields.InputDataFields.groundtruth_instance_masks not in output_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0])
Example #27
Source File: input_reader_builder_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_raises_error_with_no_input_paths(self): input_reader_text_proto = """ shuffle: false num_readers: 1 load_instance_masks: true """ input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) with self.assertRaises(ValueError): input_reader_builder.build(input_reader_proto)
Example #28
Source File: input_reader_builder_test.py From moveo_ros with MIT License | 5 votes |
def test_build_tf_record_input_reader(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) sv = tf.train.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) output_dict = sess.run(tensor_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0])
Example #29
Source File: input_reader_builder_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader_and_load_instance_masks(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 load_instance_masks: true tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) with tf.train.MonitoredSession() as sess: output_dict = sess.run(tensor_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0]) self.assertAllEqual( (1, 4, 5), output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
Example #30
Source File: input_reader_builder_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_build_tf_record_input_reader(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = input_reader_builder.build(input_reader_proto) with tf.train.MonitoredSession() as sess: output_dict = sess.run(tensor_dict) self.assertTrue(fields.InputDataFields.groundtruth_instance_masks not in output_dict) self.assertEquals( (4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0])