Python object_detection.core.box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND Examples

The following are 30 code examples of object_detection.core.box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module object_detection.core.box_predictor , or try the search function .
Example #1
Source File: box_predictor_test.py    From Traffic-Rule-Violation-Detection-System with MIT License 6 votes vote down vote up
def test_get_boxes_with_five_classes(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4,
    )
    box_predictions = mask_box_predictor.predict(
        [image_features], num_predictions_per_location=[1],
        scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    class_predictions_with_background = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]
    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       class_predictions_with_background_shape) = sess.run(
           [tf.shape(box_encodings),
            tf.shape(class_predictions_with_background)])
      self.assertAllEqual(box_encodings_shape, [2, 1, 5, 4])
      self.assertAllEqual(class_predictions_with_background_shape, [2, 1, 6]) 
Example #2
Source File: box_predictor_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def test_get_boxes_with_five_classes(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4,
    )
    box_predictions = mask_box_predictor.predict(
        [image_features], num_predictions_per_location=[1],
        scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    class_predictions_with_background = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]
    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       class_predictions_with_background_shape) = sess.run(
           [tf.shape(box_encodings),
            tf.shape(class_predictions_with_background)])
      self.assertAllEqual(box_encodings_shape, [2, 1, 5, 4])
      self.assertAllEqual(class_predictions_with_background_shape, [2, 1, 6]) 
Example #3
Source File: box_predictor_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def test_do_not_return_instance_masks_without_request(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4)
    box_predictions = mask_box_predictor.predict(
        [image_features], num_predictions_per_location=[1],
        scope='BoxPredictor')
    self.assertEqual(len(box_predictions), 2)
    self.assertTrue(box_predictor.BOX_ENCODINGS in box_predictions)
    self.assertTrue(box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND
                    in box_predictions) 
Example #4
Source File: convolutional_box_predictor.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def _predict_head(self, head_name, head_obj, image_feature, box_tower_feature,
                    feature_index, has_different_feature_channels,
                    target_channel, inserted_layer_counter,
                    num_predictions_per_location):
    if head_name == CLASS_PREDICTIONS_WITH_BACKGROUND:
      tower_name_scope = 'ClassPredictionTower'
    elif head_name == MASK_PREDICTIONS:
      tower_name_scope = 'MaskPredictionTower'
    else:
      raise ValueError('Unknown head')
    if self._share_prediction_tower:
      head_tower_feature = box_tower_feature
    else:
      head_tower_feature = self._compute_base_tower(
          tower_name_scope=tower_name_scope,
          image_feature=image_feature,
          feature_index=feature_index,
          has_different_feature_channels=has_different_feature_channels,
          target_channel=target_channel,
          inserted_layer_counter=inserted_layer_counter)
    return head_obj.predict(
        features=head_tower_feature,
        num_predictions_per_location=num_predictions_per_location) 
Example #5
Source File: box_predictor_test.py    From HereIsWally with MIT License 6 votes vote down vote up
def test_get_boxes_with_five_classes(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4,
    )
    box_predictions = mask_box_predictor.predict(
        image_features, num_predictions_per_location=1, scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    class_predictions_with_background = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]
    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       class_predictions_with_background_shape) = sess.run(
           [tf.shape(box_encodings),
            tf.shape(class_predictions_with_background)])
      self.assertAllEqual(box_encodings_shape, [2, 1, 5, 4])
      self.assertAllEqual(class_predictions_with_background_shape, [2, 1, 6]) 
Example #6
Source File: box_predictor_test.py    From garbage-object-detection-tensorflow with MIT License 6 votes vote down vote up
def test_get_boxes_with_five_classes(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4,
    )
    box_predictions = mask_box_predictor.predict(
        image_features, num_predictions_per_location=1, scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    class_predictions_with_background = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]
    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       class_predictions_with_background_shape) = sess.run(
           [tf.shape(box_encodings),
            tf.shape(class_predictions_with_background)])
      self.assertAllEqual(box_encodings_shape, [2, 1, 5, 4])
      self.assertAllEqual(class_predictions_with_background_shape, [2, 1, 6]) 
Example #7
Source File: box_predictor_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def test_get_boxes_for_five_aspect_ratios_per_location(self):

    def graph_fn(image_features):
      conv_box_predictor = box_predictor.WeightSharedConvolutionalBoxPredictor(
          is_training=False,
          num_classes=0,
          conv_hyperparams=self._build_arg_scope_with_conv_hyperparams(),
          depth=32,
          num_layers_before_predictor=1,
          box_code_size=4)
      box_predictions = conv_box_predictor.predict(
          [image_features], num_predictions_per_location=[5],
          scope='BoxPredictor')
      box_encodings = tf.concat(
          box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
      objectness_predictions = tf.concat(box_predictions[
          box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1)
      return (box_encodings, objectness_predictions)
    image_features = np.random.rand(4, 8, 8, 64).astype(np.float32)
    (box_encodings, objectness_predictions) = self.execute(
        graph_fn, [image_features])
    self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4])
    self.assertAllEqual(objectness_predictions.shape, [4, 320, 1]) 
Example #8
Source File: box_predictor_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_get_boxes_with_five_classes(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4,
    )
    box_predictions = mask_box_predictor.predict(
        image_features, num_predictions_per_location=1, scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    class_predictions_with_background = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]
    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       class_predictions_with_background_shape) = sess.run(
           [tf.shape(box_encodings),
            tf.shape(class_predictions_with_background)])
      self.assertAllEqual(box_encodings_shape, [2, 1, 5, 4])
      self.assertAllEqual(class_predictions_with_background_shape, [2, 1, 6]) 
Example #9
Source File: box_predictor_test.py    From yolo_v2 with Apache License 2.0 6 votes vote down vote up
def test_get_boxes_with_five_classes(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4,
    )
    box_predictions = mask_box_predictor.predict(
        image_features, num_predictions_per_location=1, scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    class_predictions_with_background = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]
    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       class_predictions_with_background_shape) = sess.run(
           [tf.shape(box_encodings),
            tf.shape(class_predictions_with_background)])
      self.assertAllEqual(box_encodings_shape, [2, 1, 5, 4])
      self.assertAllEqual(class_predictions_with_background_shape, [2, 1, 6]) 
Example #10
Source File: box_predictor_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def test_get_boxes_with_five_classes(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams_fn=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4,
    )
    box_predictions = mask_box_predictor.predict(
        [image_features], num_predictions_per_location=[1],
        scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    class_predictions_with_background = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]
    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       class_predictions_with_background_shape) = sess.run(
           [tf.shape(box_encodings),
            tf.shape(class_predictions_with_background)])
      self.assertAllEqual(box_encodings_shape, [2, 1, 5, 4])
      self.assertAllEqual(class_predictions_with_background_shape, [2, 1, 6]) 
Example #11
Source File: box_predictor_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def test_bias_predictions_to_background_with_sigmoid_score_conversion(self):

    def graph_fn(image_features):
      conv_box_predictor = box_predictor.WeightSharedConvolutionalBoxPredictor(
          is_training=True,
          num_classes=2,
          conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(),
          depth=32,
          num_layers_before_predictor=1,
          class_prediction_bias_init=-4.6,
          box_code_size=4)
      box_predictions = conv_box_predictor.predict(
          [image_features], num_predictions_per_location=[5],
          scope='BoxPredictor')
      class_predictions = tf.concat(box_predictions[
          box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1)
      return (tf.nn.sigmoid(class_predictions),)
    image_features = np.random.rand(4, 8, 8, 64).astype(np.float32)
    class_predictions = self.execute(graph_fn, [image_features])
    self.assertAlmostEqual(np.mean(class_predictions), 0.01, places=3) 
Example #12
Source File: box_predictor_test.py    From Person-Detection-and-Tracking with MIT License 6 votes vote down vote up
def test_do_not_return_instance_masks_without_request(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams_fn=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4)
    box_predictions = mask_box_predictor.predict(
        [image_features], num_predictions_per_location=[1],
        scope='BoxPredictor')
    self.assertEqual(len(box_predictions), 2)
    self.assertTrue(box_predictor.BOX_ENCODINGS in box_predictions)
    self.assertTrue(box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND
                    in box_predictions) 
Example #13
Source File: box_predictor_test.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def test_get_boxes_with_five_classes(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4,
    )
    box_predictions = mask_box_predictor.predict(
        image_features, num_predictions_per_location=1, scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    class_predictions_with_background = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]
    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       class_predictions_with_background_shape) = sess.run(
           [tf.shape(box_encodings),
            tf.shape(class_predictions_with_background)])
      self.assertAllEqual(box_encodings_shape, [2, 1, 5, 4])
      self.assertAllEqual(class_predictions_with_background_shape, [2, 1, 6]) 
Example #14
Source File: test_utils.py    From Traffic-Rule-Violation-Detection-System with MIT License 5 votes vote down vote up
def _predict(self, image_features, num_predictions_per_location):
    image_feature = image_features[0]
    combined_feature_shape = shape_utils.combined_static_and_dynamic_shape(
        image_feature)
    batch_size = combined_feature_shape[0]
    num_anchors = (combined_feature_shape[1] * combined_feature_shape[2])
    code_size = 4
    zero = tf.reduce_sum(0 * image_feature)
    box_encodings = zero + tf.zeros(
        (batch_size, num_anchors, 1, code_size), dtype=tf.float32)
    class_predictions_with_background = zero + tf.zeros(
        (batch_size, num_anchors, self.num_classes + 1), dtype=tf.float32)
    return {box_predictor.BOX_ENCODINGS: box_encodings,
            box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND:
            class_predictions_with_background} 
Example #15
Source File: box_predictor_test.py    From Person-Detection-and-Tracking with MIT License 5 votes vote down vote up
def test_get_predictions_with_feature_maps_of_dynamic_shape(
      self):
    image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64])
    conv_box_predictor = box_predictor.WeightSharedConvolutionalBoxPredictor(
        is_training=False,
        num_classes=0,
        conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(),
        depth=32,
        num_layers_before_predictor=1,
        box_code_size=4)
    box_predictions = conv_box_predictor.predict(
        [image_features], num_predictions_per_location=[5],
        scope='BoxPredictor')
    box_encodings = tf.concat(box_predictions[box_predictor.BOX_ENCODINGS],
                              axis=1)
    objectness_predictions = tf.concat(box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1)
    init_op = tf.global_variables_initializer()

    resolution = 32
    expected_num_anchors = resolution*resolution*5
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       objectness_predictions_shape) = sess.run(
           [tf.shape(box_encodings), tf.shape(objectness_predictions)],
           feed_dict={image_features:
                      np.random.rand(4, resolution, resolution, 64)})
      self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 4])
      self.assertAllEqual(objectness_predictions_shape,
                          [4, expected_num_anchors, 1]) 
Example #16
Source File: box_predictor_test.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def test_get_boxes_for_one_aspect_ratio_per_location(self):
    image_features = tf.random_uniform([4, 8, 8, 64], dtype=tf.float32)
    conv_box_predictor = box_predictor.ConvolutionalBoxPredictor(
        is_training=False,
        num_classes=0,
        conv_hyperparams=self._build_arg_scope_with_conv_hyperparams(),
        min_depth=0,
        max_depth=32,
        num_layers_before_predictor=1,
        use_dropout=True,
        dropout_keep_prob=0.8,
        kernel_size=1,
        box_code_size=4
    )
    box_predictions = conv_box_predictor.predict(
        image_features, num_predictions_per_location=1, scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    objectness_predictions = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       objectness_predictions_shape) = sess.run(
           [tf.shape(box_encodings), tf.shape(objectness_predictions)])
      self.assertAllEqual(box_encodings_shape, [4, 64, 1, 4])
      self.assertAllEqual(objectness_predictions_shape, [4, 64, 1]) 
Example #17
Source File: box_predictor_test.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def test_get_boxes_for_five_aspect_ratios_per_location(self):
    image_features = tf.random_uniform([4, 8, 8, 64], dtype=tf.float32)
    conv_box_predictor = box_predictor.ConvolutionalBoxPredictor(
        is_training=False,
        num_classes=0,
        conv_hyperparams=self._build_arg_scope_with_conv_hyperparams(),
        min_depth=0,
        max_depth=32,
        num_layers_before_predictor=1,
        use_dropout=True,
        dropout_keep_prob=0.8,
        kernel_size=1,
        box_code_size=4
    )
    box_predictions = conv_box_predictor.predict(
        image_features, num_predictions_per_location=5, scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    objectness_predictions = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       objectness_predictions_shape) = sess.run(
           [tf.shape(box_encodings), tf.shape(objectness_predictions)])
      self.assertAllEqual(box_encodings_shape, [4, 320, 1, 4])
      self.assertAllEqual(objectness_predictions_shape, [4, 320, 1]) 
Example #18
Source File: box_predictor_test.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def test_do_not_return_instance_masks_and_keypoints_without_request(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4)
    box_predictions = mask_box_predictor.predict(
        image_features, num_predictions_per_location=1, scope='BoxPredictor')
    self.assertEqual(len(box_predictions), 2)
    self.assertTrue(box_predictor.BOX_ENCODINGS in box_predictions)
    self.assertTrue(box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND
                    in box_predictions) 
Example #19
Source File: faster_rcnn_meta_arch.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def _predict_rpn_proposals(self, rpn_box_predictor_features):
    """Adds box predictors to RPN feature map to predict proposals.

    Note resulting tensors will not have been postprocessed.

    Args:
      rpn_box_predictor_features: A 4-D float32 tensor with shape
        [batch, height, width, depth] to be used for predicting proposal boxes
        and corresponding objectness scores.

    Returns:
      box_encodings: 3-D float tensor of shape
        [batch_size, num_anchors, self._box_coder.code_size] containing
        predicted boxes.
      objectness_predictions_with_background: 3-D float tensor of shape
        [batch_size, num_anchors, 2] containing class
        predictions (logits) for each of the anchors.  Note that this
        tensor *includes* background class predictions (at class index 0).

    Raises:
      RuntimeError: if the anchor generator generates anchors corresponding to
        multiple feature maps.  We currently assume that a single feature map
        is generated for the RPN.
    """
    num_anchors_per_location = (
        self._first_stage_anchor_generator.num_anchors_per_location())
    if len(num_anchors_per_location) != 1:
      raise RuntimeError('anchor_generator is expected to generate anchors '
                         'corresponding to a single feature map.')
    box_predictions = self._first_stage_box_predictor.predict(
        rpn_box_predictor_features,
        num_anchors_per_location[0],
        scope=self.first_stage_box_predictor_scope)

    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    objectness_predictions_with_background = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]
    return (tf.squeeze(box_encodings, axis=2),
            objectness_predictions_with_background) 
Example #20
Source File: box_predictor_test.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location(
      self):
    num_classes_without_background = 6
    image_features = tf.random_uniform([4, 8, 8, 64], dtype=tf.float32)
    conv_box_predictor = box_predictor.ConvolutionalBoxPredictor(
        is_training=False,
        num_classes=num_classes_without_background,
        conv_hyperparams=self._build_arg_scope_with_conv_hyperparams(),
        min_depth=0,
        max_depth=32,
        num_layers_before_predictor=1,
        use_dropout=True,
        dropout_keep_prob=0.8,
        kernel_size=1,
        box_code_size=4
    )
    box_predictions = conv_box_predictor.predict(
        image_features,
        num_predictions_per_location=5,
        scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    class_predictions_with_background = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape, class_predictions_with_background_shape
      ) = sess.run([
          tf.shape(box_encodings), tf.shape(class_predictions_with_background)])
      self.assertAllEqual(box_encodings_shape, [4, 320, 1, 4])
      self.assertAllEqual(class_predictions_with_background_shape,
                          [4, 320, num_classes_without_background+1]) 
Example #21
Source File: box_predictor_test.py    From Person-Detection-and-Tracking with MIT License 5 votes vote down vote up
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location(
      self):
    num_classes_without_background = 6
    image_features = np.random.rand(4, 8, 8, 64).astype(np.float32)
    def graph_fn(image_features):
      conv_box_predictor = box_predictor.ConvolutionalBoxPredictor(
          is_training=False,
          num_classes=num_classes_without_background,
          conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(),
          min_depth=0,
          max_depth=32,
          num_layers_before_predictor=1,
          use_dropout=True,
          dropout_keep_prob=0.8,
          kernel_size=1,
          box_code_size=4
      )
      box_predictions = conv_box_predictor.predict(
          [image_features],
          num_predictions_per_location=[5],
          scope='BoxPredictor')
      box_encodings = tf.concat(
          box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
      class_predictions_with_background = tf.concat(
          box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
          axis=1)
      return (box_encodings, class_predictions_with_background)
    (box_encodings,
     class_predictions_with_background) = self.execute(graph_fn,
                                                       [image_features])
    self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4])
    self.assertAllEqual(class_predictions_with_background.shape,
                        [4, 320, num_classes_without_background+1]) 
Example #22
Source File: box_predictor_test.py    From Person-Detection-and-Tracking with MIT License 5 votes vote down vote up
def test_get_boxes_for_five_aspect_ratios_per_location(self):
    def graph_fn(image_features):
      conv_box_predictor = box_predictor.ConvolutionalBoxPredictor(
          is_training=False,
          num_classes=0,
          conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(),
          min_depth=0,
          max_depth=32,
          num_layers_before_predictor=1,
          use_dropout=True,
          dropout_keep_prob=0.8,
          kernel_size=1,
          box_code_size=4
      )
      box_predictions = conv_box_predictor.predict(
          [image_features], num_predictions_per_location=[5],
          scope='BoxPredictor')
      box_encodings = tf.concat(
          box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
      objectness_predictions = tf.concat(
          box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
          axis=1)
      return (box_encodings, objectness_predictions)
    image_features = np.random.rand(4, 8, 8, 64).astype(np.float32)
    (box_encodings, objectness_predictions) = self.execute(graph_fn,
                                                           [image_features])
    self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4])
    self.assertAllEqual(objectness_predictions.shape, [4, 320, 1]) 
Example #23
Source File: box_predictor_test.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location(
      self):
    num_classes_without_background = 6
    image_features = tf.random_uniform([4, 8, 8, 64], dtype=tf.float32)
    conv_box_predictor = box_predictor.ConvolutionalBoxPredictor(
        is_training=False,
        num_classes=num_classes_without_background,
        conv_hyperparams=self._build_arg_scope_with_conv_hyperparams(),
        min_depth=0,
        max_depth=32,
        num_layers_before_predictor=1,
        use_dropout=True,
        dropout_keep_prob=0.8,
        kernel_size=1,
        box_code_size=4
    )
    box_predictions = conv_box_predictor.predict(
        image_features,
        num_predictions_per_location=5,
        scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    class_predictions_with_background = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape, class_predictions_with_background_shape
      ) = sess.run([
          tf.shape(box_encodings), tf.shape(class_predictions_with_background)])
      self.assertAllEqual(box_encodings_shape, [4, 320, 1, 4])
      self.assertAllEqual(class_predictions_with_background_shape,
                          [4, 320, num_classes_without_background+1]) 
Example #24
Source File: box_predictor_test.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def test_get_boxes_for_one_aspect_ratio_per_location(self):
    image_features = tf.random_uniform([4, 8, 8, 64], dtype=tf.float32)
    conv_box_predictor = box_predictor.ConvolutionalBoxPredictor(
        is_training=False,
        num_classes=0,
        conv_hyperparams=self._build_arg_scope_with_conv_hyperparams(),
        min_depth=0,
        max_depth=32,
        num_layers_before_predictor=1,
        use_dropout=True,
        dropout_keep_prob=0.8,
        kernel_size=1,
        box_code_size=4
    )
    box_predictions = conv_box_predictor.predict(
        image_features, num_predictions_per_location=1, scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    objectness_predictions = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       objectness_predictions_shape) = sess.run(
           [tf.shape(box_encodings), tf.shape(objectness_predictions)])
      self.assertAllEqual(box_encodings_shape, [4, 64, 1, 4])
      self.assertAllEqual(objectness_predictions_shape, [4, 64, 1]) 
Example #25
Source File: box_predictor_test.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def test_get_boxes_for_five_aspect_ratios_per_location(self):
    image_features = tf.random_uniform([4, 8, 8, 64], dtype=tf.float32)
    conv_box_predictor = box_predictor.ConvolutionalBoxPredictor(
        is_training=False,
        num_classes=0,
        conv_hyperparams=self._build_arg_scope_with_conv_hyperparams(),
        min_depth=0,
        max_depth=32,
        num_layers_before_predictor=1,
        use_dropout=True,
        dropout_keep_prob=0.8,
        kernel_size=1,
        box_code_size=4
    )
    box_predictions = conv_box_predictor.predict(
        image_features, num_predictions_per_location=5, scope='BoxPredictor')
    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    objectness_predictions = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      (box_encodings_shape,
       objectness_predictions_shape) = sess.run(
           [tf.shape(box_encodings), tf.shape(objectness_predictions)])
      self.assertAllEqual(box_encodings_shape, [4, 320, 1, 4])
      self.assertAllEqual(objectness_predictions_shape, [4, 320, 1]) 
Example #26
Source File: box_predictor_test.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def test_do_not_return_instance_masks_and_keypoints_without_request(self):
    image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32)
    mask_box_predictor = box_predictor.MaskRCNNBoxPredictor(
        is_training=False,
        num_classes=5,
        fc_hyperparams=self._build_arg_scope_with_hyperparams(),
        use_dropout=False,
        dropout_keep_prob=0.5,
        box_code_size=4)
    box_predictions = mask_box_predictor.predict(
        image_features, num_predictions_per_location=1, scope='BoxPredictor')
    self.assertEqual(len(box_predictions), 2)
    self.assertTrue(box_predictor.BOX_ENCODINGS in box_predictions)
    self.assertTrue(box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND
                    in box_predictions) 
Example #27
Source File: faster_rcnn_meta_arch.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def _predict_rpn_proposals(self, rpn_box_predictor_features):
    """Adds box predictors to RPN feature map to predict proposals.

    Note resulting tensors will not have been postprocessed.

    Args:
      rpn_box_predictor_features: A 4-D float32 tensor with shape
        [batch, height, width, depth] to be used for predicting proposal boxes
        and corresponding objectness scores.

    Returns:
      box_encodings: 3-D float tensor of shape
        [batch_size, num_anchors, self._box_coder.code_size] containing
        predicted boxes.
      objectness_predictions_with_background: 3-D float tensor of shape
        [batch_size, num_anchors, 2] containing class
        predictions (logits) for each of the anchors.  Note that this
        tensor *includes* background class predictions (at class index 0).

    Raises:
      RuntimeError: if the anchor generator generates anchors corresponding to
        multiple feature maps.  We currently assume that a single feature map
        is generated for the RPN.
    """
    num_anchors_per_location = (
        self._first_stage_anchor_generator.num_anchors_per_location())
    if len(num_anchors_per_location) != 1:
      raise RuntimeError('anchor_generator is expected to generate anchors '
                         'corresponding to a single feature map.')
    box_predictions = self._first_stage_box_predictor.predict(
        rpn_box_predictor_features,
        num_anchors_per_location[0],
        scope=self.first_stage_box_predictor_scope)

    box_encodings = box_predictions[box_predictor.BOX_ENCODINGS]
    objectness_predictions_with_background = box_predictions[
        box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND]
    return (tf.squeeze(box_encodings, axis=2),
            objectness_predictions_with_background) 
Example #28
Source File: box_predictor_test.py    From Person-Detection-and-Tracking with MIT License 5 votes vote down vote up
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location(
      self):

    num_classes_without_background = 6
    def graph_fn(image_features):
      conv_box_predictor = box_predictor.WeightSharedConvolutionalBoxPredictor(
          is_training=False,
          num_classes=num_classes_without_background,
          conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(),
          depth=32,
          num_layers_before_predictor=1,
          box_code_size=4)
      box_predictions = conv_box_predictor.predict(
          [image_features],
          num_predictions_per_location=[5],
          scope='BoxPredictor')
      box_encodings = tf.concat(
          box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
      class_predictions_with_background = tf.concat(box_predictions[
          box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1)
      return (box_encodings, class_predictions_with_background)

    image_features = np.random.rand(4, 8, 8, 64).astype(np.float32)
    (box_encodings, class_predictions_with_background) = self.execute(
        graph_fn, [image_features])
    self.assertAllEqual(box_encodings.shape, [4, 320, 4])
    self.assertAllEqual(class_predictions_with_background.shape,
                        [4, 320, num_classes_without_background+1]) 
Example #29
Source File: test_utils.py    From garbage-object-detection-tensorflow with MIT License 5 votes vote down vote up
def _predict(self, image_features, num_predictions_per_location):
    combined_feature_shape = shape_utils.combined_static_and_dynamic_shape(
        image_features)
    batch_size = combined_feature_shape[0]
    num_anchors = (combined_feature_shape[1] * combined_feature_shape[2])
    code_size = 4
    zero = tf.reduce_sum(0 * image_features)
    box_encodings = zero + tf.zeros(
        (batch_size, num_anchors, 1, code_size), dtype=tf.float32)
    class_predictions_with_background = zero + tf.zeros(
        (batch_size, num_anchors, self.num_classes + 1), dtype=tf.float32)
    return {box_predictor.BOX_ENCODINGS: box_encodings,
            box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND:
            class_predictions_with_background} 
Example #30
Source File: box_predictor_test.py    From Person-Detection-and-Tracking with MIT License 5 votes vote down vote up
def test_get_multi_class_predictions_from_two_feature_maps(
      self):

    num_classes_without_background = 6
    def graph_fn(image_features1, image_features2):
      conv_box_predictor = box_predictor.WeightSharedConvolutionalBoxPredictor(
          is_training=False,
          num_classes=num_classes_without_background,
          conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(),
          depth=32,
          num_layers_before_predictor=1,
          box_code_size=4)
      box_predictions = conv_box_predictor.predict(
          [image_features1, image_features2],
          num_predictions_per_location=[5, 5],
          scope='BoxPredictor')
      box_encodings = tf.concat(
          box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
      class_predictions_with_background = tf.concat(
          box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND],
          axis=1)
      return (box_encodings, class_predictions_with_background)

    image_features1 = np.random.rand(4, 8, 8, 64).astype(np.float32)
    image_features2 = np.random.rand(4, 8, 8, 64).astype(np.float32)
    (box_encodings, class_predictions_with_background) = self.execute(
        graph_fn, [image_features1, image_features2])
    self.assertAllEqual(box_encodings.shape, [4, 640, 4])
    self.assertAllEqual(class_predictions_with_background.shape,
                        [4, 640, num_classes_without_background+1])