Python keras.callbacks.Callback.__init__() Examples
The following are 30
code examples of keras.callbacks.Callback.__init__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.callbacks.Callback
, or try the search function
.
Example #1
Source File: keras_callbacks.py From agnez with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, name, fig_title, url): """ fig_title: Figure Title url : str, optional Url of the bokeh-server. Ex: when starting the bokeh-server with ``bokeh-server --ip 0.0.0.0`` at ``alice``, server_url should be ``http://alice:5006``. When not specified the default configured by ``bokeh_server`` in ``.blocksrc`` will be used. Defaults to ``http://localhost:5006/``. Reference: mila-udem/blocks-extras """ Callback.__init__(self) self.name = name self.fig_title = fig_title self.plots = [] output_server(name, url=url) cursession().publish()
Example #2
Source File: Keras_utils.py From coling2018_fake-news-challenge with Apache License 2.0 | 6 votes |
def __init__(self, log_dir='./logs', histogram_freq=0, batch_size=32, write_graph=True, write_grads=False, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None): super(TensorBoard, self).__init__() if K.backend() != 'tensorflow': raise RuntimeError('TensorBoard callback only works ' 'with the TensorFlow backend.') self.log_dir = log_dir self.histogram_freq = histogram_freq self.merged = None self.write_graph = write_graph self.write_grads = write_grads self.write_images = write_images self.embeddings_freq = embeddings_freq self.embeddings_layer_names = embeddings_layer_names self.embeddings_metadata = embeddings_metadata or {} self.batch_size = batch_size
Example #3
Source File: Keras_utils.py From coling2018_fake-news-challenge with Apache License 2.0 | 6 votes |
def __init__(self, epochs, X_test_claims, X_test_orig_docs, y_test, loss_filename, epsilon=0.0, min_epoch = 15, X_test_nt=None): self.epochs = epochs self.patience = 2 self.counter = 0 self.prev_score = 0 self.epsilon = epsilon self.loss_filename = loss_filename self.min_epoch = min_epoch self.X_test_nt = X_test_nt #self.print_train_f1 = print_train_f1 #self.X_train_claims = X_train_claims #self.X_train_orig_docs = X_train_orig_docs #self.X_train_evid = X_train_evid #self.y_train = y_train self.X_test_claims = X_test_claims self.X_test_orig_docs = X_test_orig_docs self.y_test = y_test Callback.__init__(self)
Example #4
Source File: uno_baseline_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, rate, **kwargs): super(PermanentDropout, self).__init__(rate, **kwargs) self.uses_learning_phase = False
Example #5
Source File: combo_baseline_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, data, partition='train', batch_size=32): self.lock = threading.Lock() self.data = data self.partition = partition self.batch_size = batch_size if partition == 'train': self.cycle = cycle(range(data.n_train)) self.num_data = data.n_train elif partition == 'val': self.cycle = cycle(range(data.total)[-data.n_val:]) self.num_data = data.n_val else: raise Exception('Data partition "{}" not recognized.'.format(partition))
Example #6
Source File: combo_baseline_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, print_fcn=print): Callback.__init__(self) self.print_fcn = print_fcn
Example #7
Source File: combo_baseline_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, rate, **kwargs): super(PermanentDropout, self).__init__(rate, **kwargs) self.uses_learning_phase = False
Example #8
Source File: combo_baseline_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, save_all_models=False): Callback.__init__(self) self.save_all_models = save_all_models get_custom_objects()['PermanentDropout'] = PermanentDropout
Example #9
Source File: uno_model_utils.py From Benchmarks with MIT License | 5 votes |
def __init__(self, save_all_models=False): Callback.__init__(self) self.save_all_models = save_all_models candle.register_permanent_dropout()
Example #10
Source File: uno_model_utils.py From Benchmarks with MIT License | 5 votes |
def __init__(self, fname): self.fname = fname
Example #11
Source File: uno_baseline_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, print_fcn=print): Callback.__init__(self) self.print_fcn = print_fcn
Example #12
Source File: combo_dose.py From Benchmarks with MIT License | 5 votes |
def __init__(self, print_fcn=print): Callback.__init__(self) self.print_fcn = print_fcn
Example #13
Source File: uno_baseline_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, fname): self.fname = fname
Example #14
Source File: uno_clr_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, print_fcn=print): Callback.__init__(self) self.print_fcn = print_fcn
Example #15
Source File: uno_clr_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, rate, **kwargs): super(PermanentDropout, self).__init__(rate, **kwargs) self.uses_learning_phase = False
Example #16
Source File: uno_clr_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, fname): self.fname = fname
Example #17
Source File: uno_clr_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, **entries): self.__dict__.update(entries)
Example #18
Source File: keras_utils.py From Benchmarks with MIT License | 5 votes |
def __init__(self, rate, **kwargs): super(PermanentDropout, self).__init__(rate, **kwargs) self.uses_learning_phase = False
Example #19
Source File: combo_dose.py From Benchmarks with MIT License | 5 votes |
def __init__(self, **entries): self.__dict__.update(entries)
Example #20
Source File: combo_dose.py From Benchmarks with MIT License | 5 votes |
def __init__(self, rate, **kwargs): super(PermanentDropout, self).__init__(rate, **kwargs) self.uses_learning_phase = False
Example #21
Source File: combo_dose.py From Benchmarks with MIT License | 5 votes |
def __init__(self, data, partition='train', batch_size=32): self.lock = threading.Lock() self.data = data self.partition = partition self.batch_size = batch_size if partition == 'train': self.cycle = cycle(range(data.n_train)) self.num_data = data.n_train elif partition == 'val': self.cycle = cycle(range(data.total)[-data.n_val:]) self.num_data = data.n_val else: raise Exception('Data partition "{}" not recognized.'.format(partition))
Example #22
Source File: attn_baseline_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, print_fcn=print): Callback.__init__(self) self.print_fcn = print_fcn
Example #23
Source File: p1b1_baseline_keras2.py From Benchmarks with MIT License | 5 votes |
def __init__(self, print_fcn=print): Callback.__init__(self) self.print_fcn = print_fcn
Example #24
Source File: util.py From lyapy with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, loss_threshold): Callback.__init__(self) self.loss_threshold = loss_threshold
Example #25
Source File: timing.py From keras_experiments with The Unlicense | 5 votes |
def __init__(self, batch_size, **kwargs): Callback.__init__(self, **kwargs) self.batch_size = batch_size self.all_samples_per_sec = None self.start_time = None
Example #26
Source File: timing.py From keras_experiments with The Unlicense | 5 votes |
def __init__(self): Callback.__init__(self) self.train_beg_time = None self.all_batch_times = None self.all_epoch_times = None self.epoch_batch_times = None self._epoch_start_time = None self.start_time = None
Example #27
Source File: progress.py From KerasUI with GNU General Public License v3.0 | 5 votes |
def __init__(self, dataset_id): Callback.__init__(self) self.seen = 0 self.dataset_id = dataset_id self.samples=1000 self.oldperc=0 # print('inited '+self.samples+' '+self.dataset_id)
Example #28
Source File: tf_keras.py From imageatm with Apache License 2.0 | 5 votes |
def __init__( self, filepath: Path, logger: Logger, monitor: str = 'val_loss', verbose: int = 0, save_best_only: bool = False, save_weights_only: bool = False, mode: str = 'auto', period: int = 1, ) -> None: self.monitor = monitor self.verbose = verbose self.filepath = filepath self.save_best_only = save_best_only self.save_weights_only = save_weights_only self.period = period self.epochs_since_last_save = 0 self.logger = logger if mode not in ['auto', 'min', 'max']: self.logger.warning( 'ModelCheckpoint mode {} is unknown, fallback to auto mode.'.format(mode) ) mode = 'auto' if mode == 'min': self.monitor_op = np.less self.best = np.Inf elif mode == 'max': self.monitor_op = np.greater self.best = -np.Inf else: if 'acc' in self.monitor or self.monitor.startswith('fmeasure'): self.monitor_op = np.greater self.best = -np.Inf else: self.monitor_op = np.less self.best = np.Inf
Example #29
Source File: tf_keras.py From imageatm with Apache License 2.0 | 5 votes |
def __init__(self, logger: Logger) -> None: Callback.__init__(self) self.logger = logger self.format_epoch = 'Epoch: {} - {}' self.format_keyvalue = '{}: {:0.4f}' self.format_separator = ' - '
Example #30
Source File: keras_callbacks.py From agnez with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, filepath, X, func, how_often=10, display=None): super(Callback, self).__init__() self.filepath = filepath self.how_often = how_often self.display = display self.X = X self.func = func