Python chainer.links.DilatedConvolution2D() Examples
The following are 8
code examples of chainer.links.DilatedConvolution2D().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.links
, or try the search function
.
Example #1
Source File: conv_2d_activ.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, in_channels, out_channels, ksize=None, stride=1, pad=0, dilate=1, nobias=False, initialW=None, initial_bias=None, activ=relu): if ksize is None: out_channels, ksize, in_channels = in_channels, out_channels, None self.activ = activ super(Conv2DActiv, self).__init__() with self.init_scope(): if dilate > 1: self.conv = DilatedConvolution2D( in_channels, out_channels, ksize, stride, pad, dilate, nobias, initialW, initial_bias) else: self.conv = Convolution2D( in_channels, out_channels, ksize, stride, pad, nobias, initialW, initial_bias)
Example #2
Source File: ssd_vgg16.py From chainercv with MIT License | 6 votes |
def __init__(self): super(VGG16, self).__init__() with self.init_scope(): self.conv1_1 = L.Convolution2D(64, 3, pad=1) self.conv1_2 = L.Convolution2D(64, 3, pad=1) self.conv2_1 = L.Convolution2D(128, 3, pad=1) self.conv2_2 = L.Convolution2D(128, 3, pad=1) self.conv3_1 = L.Convolution2D(256, 3, pad=1) self.conv3_2 = L.Convolution2D(256, 3, pad=1) self.conv3_3 = L.Convolution2D(256, 3, pad=1) self.conv4_1 = L.Convolution2D(512, 3, pad=1) self.conv4_2 = L.Convolution2D(512, 3, pad=1) self.conv4_3 = L.Convolution2D(512, 3, pad=1) self.norm4 = Normalize(512, initial=initializers.Constant(20)) self.conv5_1 = L.DilatedConvolution2D(512, 3, pad=1) self.conv5_2 = L.DilatedConvolution2D(512, 3, pad=1) self.conv5_3 = L.DilatedConvolution2D(512, 3, pad=1) self.conv6 = L.DilatedConvolution2D(1024, 3, pad=6, dilate=6) self.conv7 = L.Convolution2D(1024, 1)
Example #3
Source File: conv_2d_activ.py From chainercv with MIT License | 6 votes |
def __init__(self, in_channels, out_channels, ksize=None, stride=1, pad=0, dilate=1, nobias=False, initialW=None, initial_bias=None, activ=relu): if ksize is None: out_channels, ksize, in_channels = in_channels, out_channels, None self.activ = activ super(Conv2DActiv, self).__init__() with self.init_scope(): if dilate > 1: self.conv = DilatedConvolution2D( in_channels, out_channels, ksize, stride, pad, dilate, nobias, initialW, initial_bias) else: self.conv = Convolution2D( in_channels, out_channels, ksize, stride, pad, nobias, initialW, initial_bias)
Example #4
Source File: resnet101.py From chainer-fcis with MIT License | 6 votes |
def __init__(self, in_size, out_size, ch, stride=1): super(DilatedBottleNeckA, self).__init__() initialW = chainer.initializers.HeNormal() with self.init_scope(): self.conv1 = L.Convolution2D( in_size, ch, 1, stride, 0, initialW=initialW, nobias=True) self.bn1 = L.BatchNormalization(ch, eps=self.eps) self.conv2 = L.DilatedConvolution2D( ch, ch, 3, 1, 2, dilate=2, initialW=initialW, nobias=True) self.bn2 = L.BatchNormalization(ch, eps=self.eps) self.conv3 = L.Convolution2D( ch, out_size, 1, 1, 0, initialW=initialW, nobias=True) self.bn3 = L.BatchNormalization(out_size, eps=self.eps) self.conv4 = L.Convolution2D( in_size, out_size, 1, stride, 0, initialW=initialW, nobias=True) self.bn4 = L.BatchNormalization(out_size)
Example #5
Source File: module.py From fpl with MIT License | 5 votes |
def __init__(self, nb_in, nb_out, ksize=3, dilate=1, no_bn=False): super(DConv_BN, self).__init__() self.no_bn = no_bn with self.init_scope(): self.conv = L.DilatedConvolution2D(nb_in, nb_out, ksize=(ksize, 1), pad=(dilate, 0), dilate=(dilate, 1)) if not no_bn: self.bn = L.BatchNormalization(nb_out)
Example #6
Source File: test_dilated_convolution_2d.py From chainer with MIT License | 5 votes |
def setUp(self): self.link = links.DilatedConvolution2D( 3, 2, 3, stride=2, pad=2, dilate=2) b = self.link.b.data b[...] = numpy.random.uniform(-1, 1, b.shape) self.link.cleargrads() self.x = numpy.random.uniform(-1, 1, (2, 3, 4, 3)).astype(numpy.float32) self.gy = numpy.random.uniform(-1, 1, (2, 2, 2, 2)).astype(numpy.float32)
Example #7
Source File: test_dilated_convolution_2d.py From chainer with MIT License | 5 votes |
def setUp(self): self.link = links.DilatedConvolution2D(*self.args, **self.kwargs) self.x = numpy.random.uniform(-1, 1, (2, 3, 4, 3)).astype(numpy.float32) self.link(chainer.Variable(self.x)) b = self.link.b.data b[...] = numpy.random.uniform(-1, 1, b.shape) self.link.cleargrads() self.gy = numpy.random.uniform(-1, 1, (2, 2, 2, 2)).astype(numpy.float32)
Example #8
Source File: resnet101.py From chainer-fcis with MIT License | 5 votes |
def __init__(self, in_size, ch): super(DilatedBottleNeckB, self).__init__() initialW = chainer.initializers.HeNormal() with self.init_scope(): self.conv1 = L.Convolution2D( in_size, ch, 1, 1, 0, initialW=initialW, nobias=True) self.bn1 = L.BatchNormalization(ch, eps=self.eps) self.conv2 = L.DilatedConvolution2D( ch, ch, 3, 1, 2, dilate=2, initialW=initialW, nobias=True) self.bn2 = L.BatchNormalization(ch, eps=self.eps) self.conv3 = L.Convolution2D( ch, in_size, 1, 1, 0, initialW=initialW, nobias=True) self.bn3 = L.BatchNormalization(in_size, eps=self.eps)