Python chainer.links.VGG16Layers() Examples
The following are 4
code examples of chainer.links.VGG16Layers().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.links
, or try the search function
.
Example #1
Source File: model.py From chainer with MIT License | 5 votes |
def __init__(self): super(VGG16FeatureExtractor, self).__init__() with self.init_scope(): self.cnn = L.VGG16Layers() self.cnn_layer_name = 'fc7'
Example #2
Source File: model.py From pfio with MIT License | 5 votes |
def __init__(self): super(VGG16FeatureExtractor, self).__init__() with self.init_scope(): self.cnn = L.VGG16Layers() self.cnn_layer_name = 'fc7'
Example #3
Source File: models.py From chainer-gogh with MIT License | 5 votes |
def __init__(self, alpha=[0,0,1,1], beta=[1,1,1,1]): from chainer.links import VGG16Layers print ("load model... vgg_chainer") self.model = VGG16Layers() self.alpha = alpha self.beta = beta
Example #4
Source File: main.py From style_transfer_3d with MIT License | 4 votes |
def __init__( self, filename_mesh, filename_style, texture_size=4, camera_distance=2.732, camera_distance_noise=0.1, elevation_min=20, elevation_max=40, lr_vertices=0.01, lr_textures=1.0, lambda_style=1, lambda_content=2e9, lambda_tv=1e7, image_size=224, ): super(StyleTransferModel, self).__init__() self.image_size = image_size self.camera_distance = camera_distance self.camera_distance_noise = camera_distance_noise self.elevation_min = elevation_min self.elevation_max = elevation_max self.lambda_style = lambda_style self.lambda_content = lambda_content self.lambda_tv = lambda_tv # load feature extractor self.vgg16 = cl.VGG16Layers() # load reference image reference_image = scipy.misc.imread(filename_style) reference_image = scipy.misc.imresize(reference_image, (image_size, image_size)) reference_image = reference_image.astype('float32') / 255. reference_image = reference_image[:, :, :3].transpose((2, 0, 1))[None, :, :, :] reference_image = self.xp.array(reference_image) with chainer.no_backprop_mode(): features_ref = [f.data for f in self.extract_style_feature(reference_image)] self.features_ref = features_ref self.background_color = reference_image.mean((0, 2, 3)) with self.init_scope(): # load .obj self.mesh = neural_renderer.Mesh(filename_mesh, texture_size) self.mesh.set_lr(lr_vertices, lr_textures) self.vertices_original = self.xp.copy(self.mesh.vertices.data) # setup renderer renderer = neural_renderer.Renderer() renderer.image_size = image_size renderer.background_color = self.background_color self.renderer = renderer