Python chainer.links.NStepBiLSTM() Examples
The following are 12
code examples of chainer.links.NStepBiLSTM().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.links
, or try the search function
.
Example #1
Source File: initializer.py From chainer-compiler with MIT License | 6 votes |
def collect_inits(lk, pathname): res = [] for na, pa in lk.namedparams(): if isinstance(pa.data, type(None)): continue if na.count('/') == 1: res.append((pathname + na, pa)) if isinstance(lk, L.BatchNormalization): res.append((pathname + '/avg_mean', lk.avg_mean)) # TODO(satos) このままだと、nodeのテストは通るがResNetのテストがつらい # lk.avg_var = np.ones(lk.avg_var.shape).astype(np.float32) * 4.0 res.append((pathname + '/avg_var', lk.avg_var)) elif isinstance(lk, L.NStepLSTM) or isinstance(lk, L.NStepBiLSTM): # 先にこちらで集めてしまう for i, clk in enumerate(lk.children()): for param in clk.params(): res.append((pathname + '/%d/%s' % (i, param.name), param)) return res for clk in lk.children(): res += collect_inits(clk, pathname + '/' + clk.name) return res
Example #2
Source File: initializer.py From chainer-compiler with MIT License | 6 votes |
def collect_inits(lk, pathname): res = [] for na, pa in lk.namedparams(): if isinstance(pa.data, type(None)): continue if na.count('/') == 1: res.append((pathname + na, pa)) if isinstance(lk, L.BatchNormalization): res.append((pathname + '/avg_mean', lk.avg_mean)) # TODO(satos) このままだと、nodeのテストは通るがResNetのテストがつらい # lk.avg_var = np.ones(lk.avg_var.shape).astype(np.float32) * 4.0 res.append((pathname + '/avg_var', lk.avg_var)) elif isinstance(lk, L.NStepLSTM) or isinstance(lk, L.NStepBiLSTM): # 先にこちらで集めてしまう for i, clk in enumerate(lk.children()): for param in clk.params(): res.append((pathname + '/%d/%s' % (i, param.name), param)) return res for clk in lk.children(): res += collect_inits(clk, pathname + '/' + clk.name) return res
Example #3
Source File: test_link_n_step_lstm.py From chainer with MIT License | 6 votes |
def setUp(self): shape = (self.n_layers * 2, len(self.lengths), self.out_size) if self.hidden_none: self.h = self.c = numpy.zeros(shape, 'f') else: self.h = numpy.random.uniform(-1, 1, shape).astype('f') self.c = numpy.random.uniform(-1, 1, shape).astype('f') self.xs = [ numpy.random.uniform(-1, 1, (l, self.in_size)).astype('f') for l in self.lengths] self.gh = numpy.random.uniform(-1, 1, shape).astype('f') self.gc = numpy.random.uniform(-1, 1, shape).astype('f') self.gys = [ numpy.random.uniform(-1, 1, (l, self.out_size * 2)).astype('f') for l in self.lengths] self.rnn = links.NStepBiLSTM( self.n_layers, self.in_size, self.out_size, self.dropout) for layer in self.rnn: for p in layer.params(): p.array[...] = numpy.random.uniform(-1, 1, p.shape) self.rnn.cleargrads()
Example #4
Source File: test_link_n_step_lstm.py From chainer with MIT License | 6 votes |
def check_multi_gpu_forward(self, train=True): # See chainer/chainer#6262 # NStepBiLSTM w/ cudnn & dropout should work on not current device msg = None rnn = self.rnn.copy('copy') rnn.dropout = .5 with cuda.get_device_from_id(1): if self.hidden_none: h = None else: h = cuda.to_gpu(self.h) c = cuda.to_gpu(self.c) xs = [cuda.to_gpu(x) for x in self.xs] with testing.assert_warns(DeprecationWarning): rnn = rnn.to_gpu() with cuda.get_device_from_id(0),\ chainer.using_config('train', train),\ chainer.using_config('use_cudnn', 'always'): try: rnn(h, c, xs) except Exception as e: msg = e assert msg is None
Example #5
Source File: model.py From TSNetVocoder with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, indim, outdim, normfac, fl=400, fs=80, fftl=512, fbsize=400): self.indim = indim self.outdim = outdim self.fl = fl self.fs = fs self.fftl = fftl self.fbsize = fbsize self.normfac = {'input' : {'mean' : cuda.to_gpu(normfac['input']['mean']), 'std' : cupy.fmax(cuda.to_gpu(normfac['input']['std']), 1.0E-6)}, 'output' : {'mean' : cuda.to_gpu(normfac['output']['mean']), 'std' : cupy.fmax(cuda.to_gpu(normfac['output']['std']), 1.0E-6)}} super(Model, self).__init__() with self.init_scope(): self.lx1 = L.NStepBiLSTM(1, self.indim, self.indim//2, 0.0) self.lx2 = L.Convolution2D(1, self.indim, (5, self.indim), (1, 1), (2, 0)) self.ly1 = L.NStepLSTM(3, self.fbsize+self.indim, 256, 0.0) self.ly2 = L.Linear(256, self.outdim)
Example #6
Source File: links.py From chainer-compiler with MIT License | 5 votes |
def __init__(self, ch): super(Link_NStepBiLSTM, self).__init__(L.NStepBiLSTM(1, 1, 1, 0)) # code.InteractiveConsole({'ch': ch}).interact() hd = ch.children().__next__() if not(hd.w0 is None): self.n_in = hd.w0.shape[1] else: self.n_in = None self.out_size = ch.out_size self.n_layers = ch.n_layers self.dropout = ch.dropout self.ws = [] self.bs = [] for i in range(self.n_layers * 2): ws = [] bs = [] for j in range(8): ws.append(helper.make_tensor_value_info( ('/%d/w%d' % (i, j)), TensorProto.FLOAT, ["TODO"])) bs.append(helper.make_tensor_value_info( ('/%d/b%d' % (i, j)), TensorProto.FLOAT, ["TODO"])) self.ws.append(ws) self.bs.append(bs)
Example #7
Source File: EspNet_BLSTM.py From chainer-compiler with MIT License | 5 votes |
def __init__(self, idim, elayers, cdim, hdim, dropout): super(BLSTM, self).__init__() with self.init_scope(): self.nblstm = L.NStepBiLSTM(elayers, idim, cdim, dropout) self.l_last = L.Linear(cdim * 2, hdim)
Example #8
Source File: NStepBiLSTM.py From chainer-compiler with MIT License | 5 votes |
def __init__(self, n_layer, n_in, n_out): super(A, self).__init__() with self.init_scope(): self.l1 = L.NStepBiLSTM(n_layer, n_in, n_out, 0.1)
Example #9
Source File: NStepBiLSTM.py From chainer-compiler with MIT License | 5 votes |
def __init__(self, n_layer, n_in, n_out): super(A, self).__init__() with self.init_scope(): self.l1 = L.NStepBiLSTM(n_layer, n_in, n_out, 0.1)
Example #10
Source File: models.py From EEND with MIT License | 5 votes |
def __init__(self, n_speakers=4, dropout=0.25, in_size=513, hidden_size=256, n_layers=1, embedding_layers=1, embedding_size=20, dc_loss_ratio=0.5, ): """ BLSTM-based diarization model. Args: n_speakers (int): Number of speakers in recording dropout (float): dropout ratio in_size (int): Dimension of input feature vector hidden_size (int): Number of hidden units in LSTM n_layers (int): Number of LSTM layers after embedding embedding_layers (int): Number of LSTM layers for embedding embedding_size (int): Dimension of embedding vector dc_loss_ratio (float): mixing parameter for DPCL loss """ super(BLSTMDiarization, self).__init__() with self.init_scope(): self.bi_lstm1 = L.NStepBiLSTM( n_layers, hidden_size * 2, hidden_size, dropout) self.bi_lstm_emb = L.NStepBiLSTM( embedding_layers, in_size, hidden_size, dropout) self.linear1 = L.Linear(hidden_size * 2, n_speakers) self.linear2 = L.Linear(hidden_size * 2, embedding_size) self.dc_loss_ratio = dc_loss_ratio self.n_speakers = n_speakers
Example #11
Source File: encoders.py From espnet with Apache License 2.0 | 5 votes |
def __init__(self, idim, elayers, cdim, hdim, subsample, dropout, typ="blstm"): super(RNNP, self).__init__() bidir = typ[0] == "b" if bidir: rnn = L.NStepBiLSTM if "lstm" in typ else L.NStepBiGRU else: rnn = L.NStepLSTM if "lstm" in typ else L.NStepGRU rnn_label = "birnn" if bidir else "rnn" with self.init_scope(): for i in six.moves.range(elayers): if i == 0: inputdim = idim else: inputdim = hdim _cdim = 2 * cdim if bidir else cdim # bottleneck layer to merge setattr( self, "{}{:d}".format(rnn_label, i), rnn(1, inputdim, cdim, dropout) ) setattr(self, "bt%d" % i, L.Linear(_cdim, hdim)) self.elayers = elayers self.rnn_label = rnn_label self.cdim = cdim self.subsample = subsample self.typ = typ self.bidir = bidir
Example #12
Source File: encoders.py From espnet with Apache License 2.0 | 5 votes |
def __init__(self, idim, elayers, cdim, hdim, dropout, typ="lstm"): super(RNN, self).__init__() bidir = typ[0] == "b" if bidir: rnn = L.NStepBiLSTM if "lstm" in typ else L.NStepBiGRU else: rnn = L.NStepLSTM if "lstm" in typ else L.NStepGRU _cdim = 2 * cdim if bidir else cdim with self.init_scope(): self.nbrnn = rnn(elayers, idim, cdim, dropout) self.l_last = L.Linear(_cdim, hdim) self.typ = typ self.bidir = bidir