Python bokeh.layouts() Examples
The following are 4
code examples of bokeh.layouts().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
bokeh
, or try the search function
.
Example #1
Source File: geoplot.py From Pandas-Bokeh with MIT License | 5 votes |
def _get_figure(col): """Gets the bokeh.plotting.figure from a bokeh.layouts.column.""" from bokeh.layouts import column from bokeh.plotting import figure for children in col.children: if isinstance(children, type(figure())): return children elif isinstance(children, type(column())): return _get_figure(children)
Example #2
Source File: plot.py From Pandas-Bokeh with MIT License | 4 votes |
def line(self, x=None, y=None, **kwargs): """ Plot DataFrame columns as lines. This function is useful to plot lines using DataFrame's values as coordinates. Parameters ---------- x : int or str, optional Columns to use for the horizontal axis. Either the location or the label of the columns to be used. By default, it will use the DataFrame indices. y : int, str, or list of them, optional The values to be plotted. Either the location or the label of the columns to be used. By default, it will use the remaining DataFrame numeric columns. **kwds Keyword arguments to pass on to :meth:`pandas.DataFrame.plot_bokeh`. Returns ------- Bokeh.plotting.figure or Bokeh.layouts.row Examples -------- .. plot:: :context: close-figs The following example shows the populations for some animals over the years. >>> df = pd.DataFrame({ ... 'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900] ... }, index=[1990, 1997, 2003, 2009, 2014]) >>> lines = df.plot_bokeh.line() .. plot:: :context: close-figs The following example shows the relationship between both populations. >>> lines = df.plot_bokeh.line(x='pig', y='horse') """ return self(kind="line", x=x, y=y, **kwargs)
Example #3
Source File: plot.py From Pandas-Bokeh with MIT License | 4 votes |
def step(self, x=None, y=None, **kwargs): """ Plot DataFrame columns as step lines. This function is useful to plot step lines using DataFrame's values as coordinates. Parameters ---------- x : int or str, optional Columns to use for the horizontal axis. Either the location or the label of the columns to be used. By default, it will use the DataFrame indices. y : int, str, or list of them, optional The values to be plotted. Either the location or the label of the columns to be used. By default, it will use the remaining DataFrame numeric columns. **kwds Keyword arguments to pass on to :meth:`pandas.DataFrame.plot_bokeh`. Returns ------- Bokeh.plotting.figure or Bokeh.layouts.row Examples -------- .. plot:: :context: close-figs The following example shows the populations for some animals over the years. >>> df = pd.DataFrame({ ... 'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900] ... }, index=[1990, 1997, 2003, 2009, 2014]) >>> steps = df.plot_bokeh.step() .. plot:: :context: close-figs The following example shows the relationship between both populations. >>> steps = df.plot_bokeh.step(x='pig', y='horse') """ return self(kind="step", x=x, y=y, **kwargs)
Example #4
Source File: plot.py From Pandas-Bokeh with MIT License | 4 votes |
def point(self, x=None, y=None, **kwargs): """ Plot DataFrame columns as points. This function is useful to plot lines using DataFrame's values as coordinates. Parameters ---------- x : int or str, optional Columns to use for the horizontal axis. Either the location or the label of the columns to be used. By default, it will use the DataFrame indices. y : int, str, or list of them, optional The values to be plotted. Either the location or the label of the columns to be used. By default, it will use the remaining DataFrame numeric columns. **kwds Keyword arguments to pass on to :meth:`pandas.DataFrame.plot_bokeh`. Returns ------- Bokeh.plotting.figure or Bokeh.layouts.row Examples -------- .. plot:: :context: close-figs The following example shows the populations for some animals over the years. >>> df = pd.DataFrame({ ... 'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900] ... }, index=[1990, 1997, 2003, 2009, 2014]) >>> lines = df.plot_bokeh.point() .. plot:: :context: close-figs The following example shows the relationship between both populations. >>> lines = df.plot_bokeh.point(x='pig', y='horse') """ return self(kind="point", x=x, y=y, **kwargs)