Python chainer.utils.force_array() Examples
The following are 30
code examples of chainer.utils.force_array().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.utils
, or try the search function
.
Example #1
Source File: test_binary_accuracy.py From chainer with MIT License | 6 votes |
def forward_expected(self, inputs): x, t = inputs count = 0 correct = 0 x_flatten = x.ravel() t_flatten = t.ravel() for i in six.moves.range(t_flatten.size): if t_flatten[i] == -1: continue pred = int(x_flatten[i] >= 0) if pred == t_flatten[i]: correct += 1 count += 1 expected = float(correct) / count expected = force_array(expected, self.dtype) return expected,
Example #2
Source File: test_normal.py From chainer with MIT License | 6 votes |
def setUp_configure(self): from scipy import stats self.dist = distributions.Normal self.scipy_dist = stats.norm self.test_targets = set([ 'batch_shape', 'cdf', 'entropy', 'event_shape', 'icdf', 'log_cdf', 'log_prob', 'log_survival', 'mean', 'prob', 'sample', 'stddev', 'support', 'survival', 'variance']) loc = utils.force_array( numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32)) if self.log_scale_option: log_scale = utils.force_array( numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32)) scale = numpy.exp(log_scale) self.params = {'loc': loc, 'log_scale': log_scale} self.scipy_params = {'loc': loc, 'scale': scale} else: scale = utils.force_array(numpy.exp( numpy.random.uniform(-1, 1, self.shape)).astype(numpy.float32)) self.params = {'loc': loc, 'scale': scale} self.scipy_params = {'loc': loc, 'scale': scale}
Example #3
Source File: test_average.py From chainer with MIT License | 6 votes |
def forward_expected(self, inputs): x, w = inputs if not self.use_weights: w = None y_expect = numpy.average(x, axis=self.axis, weights=w) if self.keepdims: # numpy.average does not support keepdims axis = self.axis if axis is None: axis = list(six.moves.range(x.ndim)) elif isinstance(axis, int): axis = axis, shape = list(x.shape) for i in six.moves.range(len(shape)): if i in axis or i - len(shape) in axis: shape[i] = 1 y_expect = y_expect.reshape(shape) y_expect = utils.force_array(y_expect, dtype=self.dtype) return y_expect,
Example #4
Source File: floor.py From chainer with MIT License | 6 votes |
def floor(x): """Elementwise floor function. .. math:: y_i = \\lfloor x_i \\rfloor Args: x (:class:`~chainer.Variable` or :ref:`ndarray`): Input variable. Returns: ~chainer.Variable: Output variable. """ if isinstance(x, chainer.variable.Variable): x = x.array xp = backend.get_array_module(x) return chainer.as_variable(utils.force_array(xp.floor(x), x.dtype))
Example #5
Source File: test_sigmoid_cross_entropy.py From chainer with MIT License | 6 votes |
def check_double_backward(self, x_data, t_data, y_grad, gx_grad, normalize=True, reduce='mean'): # Skip too large case. That requires a long time. if self.shape[0] == 65536: return if reduce == 'mean': y_grad = utils.force_array(y_grad.sum()) def f(x, t): return chainer.functions.sigmoid_cross_entropy( x, t, normalize=normalize, reduce=reduce) gradient_check.check_double_backward( f, (x_data, t_data), y_grad, (gx_grad,), **self.check_double_backward_options)
Example #6
Source File: bernoulli.py From chainer with MIT License | 6 votes |
def forward(self, inputs): logit, x = inputs self.retain_inputs((0, 1)) xp = backend.get_array_module(x) y = logit * (x - 1) - xp.log(xp.exp(-logit) + 1) y = utils.force_array(y) # extreme logit logit_isinf = xp.isinf(logit) self.logit_ispinf = xp.bitwise_and(logit_isinf, logit > 0) self.logit_isminf = xp.bitwise_and(logit_isinf, logit <= 0) with numpy.errstate(divide='ignore', invalid='raise'): y = xp.where(self.logit_ispinf, xp.log(x), y) y = xp.where(self.logit_isminf, xp.log(1 - x), y) if self.binary_check: self.invalid = utils.force_array(xp.bitwise_and(x != 0, x != 1)) y[self.invalid] = -xp.inf return utils.force_array(y, logit.dtype),
Example #7
Source File: test_gamma.py From chainer with MIT License | 6 votes |
def setUp_configure(self): from scipy import stats self.dist = distributions.Gamma self.scipy_dist = stats.gamma self.test_targets = set( ['batch_shape', 'entropy', 'event_shape', 'log_prob', 'mean', 'sample', 'support', 'variance']) k = utils.force_array( numpy.random.uniform(0, 5, self.shape).astype(numpy.float32)) theta = utils.force_array( numpy.random.uniform(0, 5, self.shape).astype(numpy.float32)) self.params = {'k': k, 'theta': theta} self.scipy_params = {'a': k, 'scale': theta} self.support = 'positive'
Example #8
Source File: utils.py From chainer with MIT License | 5 votes |
def forward(self, inputs): x, = inputs self.x_zero = utils.force_array(x == 0) y = utils.force_array(x * self._logx.array) y[self.x_zero] = 0. return y,
Example #9
Source File: test_function_link.py From chainer with MIT License | 5 votes |
def forward(self, inputs_and_grad_outputs): x1, x2, gy1, gy2 = inputs_and_grad_outputs self.retain_inputs((0, 1, 2, 3)) ggx1, ggx2 = _backward_correct(x1, x2, gy1, gy2) return utils.force_array(ggx1), utils.force_array(ggx2)
Example #10
Source File: utils.py From chainer with MIT License | 5 votes |
def _modified_xlogx(x): x = chainer.as_variable(x) xp = x.xp return ModifiedXLogX( exponential.log( where.where( utils.force_array(x.array > 0), x, xp.ones_like(x.array)))).apply((x,))[0]
Example #11
Source File: uniform.py From chainer with MIT License | 5 votes |
def log_prob(self, x): if not isinstance(x, chainer.Variable): x = chainer.Variable(x) xp = backend.get_array_module(x) logp = broadcast.broadcast_to( -exponential.log(self.scale), x.shape) return where.where( utils.force_array( (x.data >= self.low.data) & (x.data <= self.high.data)), logp, xp.array(-xp.inf, logp.dtype))
Example #12
Source File: pareto.py From chainer with MIT License | 5 votes |
def log_prob(self, x): x = chainer.as_variable(x) logp = ( self._log_alpha + self.alpha * self._log_scale - (self.alpha + 1) * exponential.log(x)) xp = logp.xp return where.where( utils.force_array(x.data >= self.scale.data), logp, xp.array(-xp.inf, logp.dtype))
Example #13
Source File: trigonometric.py From chainer with MIT License | 5 votes |
def forward_cpu(self, inputs): self.retain_inputs((0, 1)) x, gy = inputs gx = utils.force_array(numpy.square(x)) numpy.negative(gx, out=gx) gx += 1 numpy.sqrt(gx, out=gx) numpy.reciprocal(gx, out=gx) gx *= gy return gx,
Example #14
Source File: trigonometric.py From chainer with MIT License | 5 votes |
def forward_cpu(self, inputs): self.retain_inputs((0, 1)) x, gy = inputs gx = utils.force_array(numpy.cos(x)) gx *= gy return gx,
Example #15
Source File: trigonometric.py From chainer with MIT License | 5 votes |
def forward_cpu(self, inputs): self.retain_inputs((0, 1)) x, gy = inputs gx = utils.force_array(numpy.sin(x)) numpy.negative(gx, out=gx) gx *= gy return gx,
Example #16
Source File: trigonometric.py From chainer with MIT License | 5 votes |
def forward(self, x): self.retain_inputs((0,)) xp = backend.get_array_module(*x) return utils.force_array(xp.tan(x[0])),
Example #17
Source File: trigonometric.py From chainer with MIT License | 5 votes |
def forward(self, x): self.retain_inputs((0,)) xp = backend.get_array_module(*x) return utils.force_array(xp.arcsin(x[0])),
Example #18
Source File: trigonometric.py From chainer with MIT License | 5 votes |
def forward(self, x): self.retain_inputs((0,)) xp = backend.get_array_module(*x) return utils.force_array(xp.arctan(x[0])),
Example #19
Source File: beta.py From chainer with MIT License | 5 votes |
def log_prob(self, x): x = chainer.as_variable(x) logp = ( (self.a - 1) * exponential.log(x) + (self.b - 1) * exponential.log(1 - x) - _lbeta(self.a, self.b)) xp = logp.xp return where.where( utils.force_array((x.array >= 0) & (x.array <= 1)), logp, xp.array(-xp.inf, logp.dtype))
Example #20
Source File: test_activation.py From chainer with MIT License | 5 votes |
def func(self, xp, a): dtype = self.out_dtype if xp is numpy: y = utils.force_array(a.clip(0, self.z)) return numpy.asarray(y.astype(dtype)) return xp.clipped_relu(a, self.z)
Example #21
Source File: test_utils.py From chainer with MIT License | 5 votes |
def test_0dim_array(self): x = utils.force_array(numpy.array(1, numpy.float32), dtype=self.dtype) self.assertIsInstance(x, numpy.ndarray) if self.dtype is None: self.assertEqual(x.dtype, numpy.float32) else: self.assertEqual(x.dtype, self.dtype)
Example #22
Source File: test_function_link.py From chainer with MIT License | 5 votes |
def forward(self, inputs_and_grad_outputs): x1, x2, gy1, gy2 = inputs_and_grad_outputs self.retain_inputs((0, 1, 2, 3)) ggx1, ggx2 = _backward_correct( x1, x2, 0 if self.expect_grad_outputs_none[0] else gy1, 0 if self.expect_grad_outputs_none[1] else gy2) return utils.force_array(ggx1), utils.force_array(ggx2)
Example #23
Source File: test_function_link.py From chainer with MIT License | 5 votes |
def forward(self, inputs): x1, x2 = inputs y1, y2 = _forward_correct(x1, x2) self.retain_inputs((0, 1)) return utils.force_array(y1), utils.force_array(y2)
Example #24
Source File: test_function_link.py From chainer with MIT License | 5 votes |
def backward(self, indexes, grad_outputs): gy1, gy2 = grad_outputs x1, x2 = self.get_retained_inputs() ggx1, ggx2 = _backward_correct( x1, x2, 0 if self.expect_grad_outputs_none[0] else gy1, 0 if self.expect_grad_outputs_none[1] else gy2) ggx1 = ggx1 + 100000 ggx2 = ggx2 + 10000 # ! make incorrect return utils.force_array(ggx1), utils.force_array(ggx2)
Example #25
Source File: test_function_link.py From chainer with MIT License | 5 votes |
def forward(self, inputs): x1, x2 = inputs y1, y2 = _forward_correct(x1, x2) self.retain_inputs((0, 1)) return utils.force_array(y1), utils.force_array(y2)
Example #26
Source File: test_function_link.py From chainer with MIT License | 5 votes |
def forward(self, inputs): x1, x2 = inputs y1, y2 = _forward_correct(x1, x2) y1, y2 = utils.force_array(y1), utils.force_array(y2) y2[...] += 1 # ! make incorrect return y1, y2
Example #27
Source File: test_function_link.py From chainer with MIT License | 5 votes |
def forward(self, inputs): device = self.device x1, x2 = inputs if device.xp is chainerx: fallback_device = device.fallback_device assert isinstance(x1, fallback_device.supported_array_types) assert isinstance(x2, fallback_device.supported_array_types) self.retain_inputs((0, 1)) y1, y2 = _forward_correct(x1, x2) return utils.force_array(y1), utils.force_array(y2)
Example #28
Source File: test_function_link.py From chainer with MIT License | 5 votes |
def _forward_correct(x1, x2): dt = x1.dtype.type y1 = (x1 + x2) ** dt(2) y2 = (x1 ** dt(2)) * (x2 ** dt(2)) return utils.force_array(y1), utils.force_array(y2)
Example #29
Source File: test_utils.py From chainer with MIT License | 5 votes |
def test_array(self): x = utils.force_array(numpy.array([1], numpy.float32), dtype=self.dtype) self.assertIsInstance(x, numpy.ndarray) if self.dtype is None: self.assertEqual(x.dtype, numpy.float32) else: self.assertEqual(x.dtype, self.dtype)
Example #30
Source File: test_accuracy.py From chainer with MIT License | 5 votes |
def forward_expected(self, inputs): x, t = inputs expected = accuracy(x, t, self.ignore_label) expected = force_array(expected, self.dtype) return expected,