Python tensorflow.python.ops.rnn_cell_impl.assert_like_rnncell() Examples
The following are 5
code examples of tensorflow.python.ops.rnn_cell_impl.assert_like_rnncell().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.rnn_cell_impl
, or try the search function
.
Example #1
Source File: custom_decoder.py From linguistic-style-transfer with Apache License 2.0 | 6 votes |
def __init__(self, cell, helper, initial_state, latent_vector, output_layer=None): """Initialize BasicDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. latent_vector: A hidden state intended to be concatenated with the hidden state at every time-step of decoding output_layer: (Optional) An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ rnn_cell_impl.assert_like_rnncell("cell must be an RNNCell, received: %s" % type(cell), cell) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if output_layer is not None and not isinstance(output_layer, layers_base.Layer): raise TypeError("output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer self._latent_vector = latent_vector
Example #2
Source File: custom_decoder.py From Tacotron-2 with MIT License | 6 votes |
def __init__(self, cell, helper, initial_state, output_layer=None): """Initialize CustomDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. output_layer: (Optional) An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ rnn_cell_impl.assert_like_rnncell(type(cell), cell) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)): raise TypeError( "output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer
Example #3
Source File: custom_decoder.py From tacotron2-mandarin-griffin-lim with MIT License | 6 votes |
def __init__(self, cell, helper, initial_state, output_layer=None): """Initialize CustomDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. output_layer: (Optional) An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ rnn_cell_impl.assert_like_rnncell(type(cell), cell) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)): raise TypeError( "output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer
Example #4
Source File: custom_decoder.py From style-token_tacotron2 with MIT License | 6 votes |
def __init__(self, cell, helper, initial_state, output_layer=None): """Initialize CustomDecoder. Args: cell: An `RNNCell` instance. helper: A `Helper` instance. initial_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. output_layer: (Optional) An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Optional layer to apply to the RNN output prior to storing the result or sampling. Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ # rnn_cell_impl.assert_like_rnncell(type(cell), cell) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if (output_layer is not None and not isinstance(output_layer, layers_base.Layer)): raise TypeError( "output_layer must be a Layer, received: %s" % type(output_layer)) self._cell = cell self._helper = helper self._initial_state = initial_state self._output_layer = output_layer
Example #5
Source File: tacotron_decoder.py From OpenSeq2Seq with Apache License 2.0 | 4 votes |
def __init__( self, decoder_cell, helper, initial_decoder_state, attention_type, spec_layer, stop_token_layer, prenet=None, dtype=dtypes.float32, train=True ): """Initialize TacotronDecoder. Args: decoder_cell: An `RNNCell` instance. helper: A `Helper` instance. initial_decoder_state: A (possibly nested tuple of...) tensors and TensorArrays. The initial state of the RNNCell. attention_type: The type of attention used stop_token_layer: An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Stop token layer to apply to the RNN output to predict when to stop the decoder spec_layer: An instance of `tf.layers.Layer`, i.e., `tf.layers.Dense`. Output layer to apply to the RNN output to map the ressult to a spectrogram prenet: The prenet to apply to inputs Raises: TypeError: if `cell`, `helper` or `output_layer` have an incorrect type. """ rnn_cell_impl.assert_like_rnncell("cell", decoder_cell) if not isinstance(helper, helper_py.Helper): raise TypeError("helper must be a Helper, received: %s" % type(helper)) if ( spec_layer is not None and not isinstance(spec_layer, layers_base.Layer) ): raise TypeError( "spec_layer must be a Layer, received: %s" % type(spec_layer) ) self._decoder_cell = decoder_cell self._helper = helper self._decoder_initial_state = initial_decoder_state self._spec_layer = spec_layer self._stop_token_layer = stop_token_layer self._attention_type = attention_type self._dtype = dtype self._prenet = prenet if train: self._spec_layer = None self._stop_token_layer = None