Python inputs.inputs() Examples
The following are 30
code examples of inputs.inputs().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
inputs
, or try the search function
.
Example #1
Source File: graphs.py From object_detection_kitti with Apache License 2.0 | 6 votes |
def language_model_graph(self, compute_loss=True): """Constructs LM graph from inputs to LM loss. * Caches the VatxtInput object in `self.lm_inputs` * Caches tensors: `lm_embedded` Args: compute_loss: bool, whether to compute and return the loss or stop after the LSTM computation. Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=True) self.lm_inputs = inputs return self._lm_loss(inputs, compute_loss=compute_loss)
Example #2
Source File: graphs.py From models with Apache License 2.0 | 6 votes |
def _lm_loss(self, inputs, emb_key='lm_embedded', lstm_layer='lstm', lm_loss_layer='lm_loss', loss_name='lm_loss', compute_loss=True): embedded = self.layers['embedding'](inputs.tokens) self.tensors[emb_key] = embedded lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state, inputs.length) if compute_loss: loss = self.layers[lm_loss_layer]( [lstm_out, inputs.labels, inputs.weights]) with tf.control_dependencies([inputs.save_state(next_state)]): loss = tf.identity(loss) tf.summary.scalar(loss_name, loss) return loss
Example #3
Source File: graphs.py From yolo_v2 with Apache License 2.0 | 6 votes |
def language_model_graph(self, compute_loss=True): """Constructs LM graph from inputs to LM loss. * Caches the VatxtInput object in `self.lm_inputs` * Caches tensors: `lm_embedded` Args: compute_loss: bool, whether to compute and return the loss or stop after the LSTM computation. Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=True) self.lm_inputs = inputs return self._lm_loss(inputs, compute_loss=compute_loss)
Example #4
Source File: graphs.py From yolo_v2 with Apache License 2.0 | 6 votes |
def _lm_loss(self, inputs, emb_key='lm_embedded', lstm_layer='lstm', lm_loss_layer='lm_loss', loss_name='lm_loss', compute_loss=True): embedded = self.layers['embedding'](inputs.tokens) self.tensors[emb_key] = embedded lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state, inputs.length) if compute_loss: loss = self.layers[lm_loss_layer]( [lstm_out, inputs.labels, inputs.weights]) with tf.control_dependencies([inputs.save_state(next_state)]): loss = tf.identity(loss) tf.summary.scalar(loss_name, loss) return loss
Example #5
Source File: graphs.py From models with Apache License 2.0 | 6 votes |
def language_model_graph(self, compute_loss=True): """Constructs LM graph from inputs to LM loss. * Caches the VatxtInput object in `self.lm_inputs` * Caches tensors: `lm_embedded` Args: compute_loss: bool, whether to compute and return the loss or stop after the LSTM computation. Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=True) self.lm_inputs = inputs return self._lm_loss(inputs, compute_loss=compute_loss)
Example #6
Source File: graphs.py From DOTA_models with Apache License 2.0 | 6 votes |
def _lm_loss(self, inputs, emb_key='lm_embedded', lstm_layer='lstm', lm_loss_layer='lm_loss', loss_name='lm_loss', compute_loss=True): embedded = self.layers['embedding'](inputs.tokens) self.tensors[emb_key] = embedded lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state, inputs.length) if compute_loss: loss = self.layers[lm_loss_layer]( [lstm_out, inputs.labels, inputs.weights]) with tf.control_dependencies([inputs.save_state(next_state)]): loss = tf.identity(loss) tf.summary.scalar(loss_name, loss) return loss
Example #7
Source File: graphs.py From DOTA_models with Apache License 2.0 | 6 votes |
def language_model_graph(self, compute_loss=True): """Constructs LM graph from inputs to LM loss. * Caches the VatxtInput object in `self.lm_inputs` * Caches tensors: `lm_embedded` Args: compute_loss: bool, whether to compute and return the loss or stop after the LSTM computation. Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=True) self.lm_inputs = inputs return self._lm_loss(inputs, compute_loss=compute_loss)
Example #8
Source File: graphs.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def language_model_graph(self, compute_loss=True): """Constructs LM graph from inputs to LM loss. * Caches the VatxtInput object in `self.lm_inputs` * Caches tensors: `lm_embedded` Args: compute_loss: bool, whether to compute and return the loss or stop after the LSTM computation. Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=True) self.lm_inputs = inputs return self._lm_loss(inputs, compute_loss=compute_loss)
Example #9
Source File: graphs.py From Gun-Detector with Apache License 2.0 | 6 votes |
def language_model_graph(self, compute_loss=True): """Constructs LM graph from inputs to LM loss. * Caches the VatxtInput object in `self.lm_inputs` * Caches tensors: `lm_embedded` Args: compute_loss: bool, whether to compute and return the loss or stop after the LSTM computation. Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=True) self.lm_inputs = inputs return self._lm_loss(inputs, compute_loss=compute_loss)
Example #10
Source File: graphs.py From Gun-Detector with Apache License 2.0 | 6 votes |
def _lm_loss(self, inputs, emb_key='lm_embedded', lstm_layer='lstm', lm_loss_layer='lm_loss', loss_name='lm_loss', compute_loss=True): embedded = self.layers['embedding'](inputs.tokens) self.tensors[emb_key] = embedded lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state, inputs.length) if compute_loss: loss = self.layers[lm_loss_layer]( [lstm_out, inputs.labels, inputs.weights]) with tf.control_dependencies([inputs.save_state(next_state)]): loss = tf.identity(loss) tf.summary.scalar(loss_name, loss) return loss
Example #11
Source File: graphs.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def _lm_loss(self, inputs, emb_key='lm_embedded', lstm_layer='lstm', lm_loss_layer='lm_loss', loss_name='lm_loss', compute_loss=True): embedded = self.layers['embedding'](inputs.tokens) self.tensors[emb_key] = embedded lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state, inputs.length) if compute_loss: loss = self.layers[lm_loss_layer]( [lstm_out, inputs.labels, inputs.weights]) with tf.control_dependencies([inputs.save_state(next_state)]): loss = tf.identity(loss) tf.summary.scalar(loss_name, loss) return loss
Example #12
Source File: model.py From web_page_classification with MIT License | 6 votes |
def _activation_summary(self, x): """Helper to create summaries for activations. Creates a summary that provides a histogram of activations. Creates a summary that measure the sparsity of activations. Args: x: Tensor Returns: nothing """ # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. # Error: these summaries cause high classifier error!!! # All inputs to node MergeSummary/MergeSummary must be from the same frame. # tensor_name = re.sub('%s_[0-9]*/' % "tower", '', x.op.name) # tf.histogram_summary(tensor_name + '/activations', x) # tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
Example #13
Source File: graphs.py From object_detection_with_tensorflow with MIT License | 6 votes |
def _lm_loss(self, inputs, emb_key='lm_embedded', lstm_layer='lstm', lm_loss_layer='lm_loss', loss_name='lm_loss', compute_loss=True): embedded = self.layers['embedding'](inputs.tokens) self.tensors[emb_key] = embedded lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state, inputs.length) if compute_loss: loss = self.layers[lm_loss_layer]( [lstm_out, inputs.labels, inputs.weights]) with tf.control_dependencies([inputs.save_state(next_state)]): loss = tf.identity(loss) tf.summary.scalar(loss_name, loss) return loss
Example #14
Source File: model.py From web_page_classification with MIT License | 6 votes |
def loss(logits, labels): """Add L2Loss to all the trainable variables. Add summary for "Loss" and "Loss/avg". Args: logits: Logits from inference(). labels: Labels from distorted_inputs or inputs(). 1-D tensor of shape [batch_size] Returns: Loss tensor of type float. """ # Calculate the average cross entropy loss across the batch. labels = tf.cast(labels, tf.int64) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits, labels, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # The total loss is defined as the cross entropy loss plus all of the weight # decay terms (L2 loss). return tf.add_n(tf.get_collection('losses'), name='total_loss')
Example #15
Source File: graphs.py From object_detection_with_tensorflow with MIT License | 6 votes |
def language_model_graph(self, compute_loss=True): """Constructs LM graph from inputs to LM loss. * Caches the VatxtInput object in `self.lm_inputs` * Caches tensors: `lm_embedded` Args: compute_loss: bool, whether to compute and return the loss or stop after the LSTM computation. Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=True) self.lm_inputs = inputs return self._lm_loss(inputs, compute_loss=compute_loss)
Example #16
Source File: graphs.py From hands-detection with MIT License | 6 votes |
def language_model_graph(self, compute_loss=True): """Constructs LM graph from inputs to LM loss. * Caches the VatxtInput object in `self.lm_inputs` * Caches tensors: `lm_embedded` Args: compute_loss: bool, whether to compute and return the loss or stop after the LSTM computation. Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=True) self.lm_inputs = inputs return self._lm_loss(inputs, compute_loss=compute_loss)
Example #17
Source File: graphs.py From hands-detection with MIT License | 6 votes |
def _lm_loss(self, inputs, emb_key='lm_embedded', lstm_layer='lstm', lm_loss_layer='lm_loss', loss_name='lm_loss', compute_loss=True): embedded = self.layers['embedding'](inputs.tokens) self.tensors[emb_key] = embedded lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state, inputs.length) if compute_loss: loss = self.layers[lm_loss_layer]( [lstm_out, inputs.labels, inputs.weights]) with tf.control_dependencies([inputs.save_state(next_state)]): loss = tf.identity(loss) tf.summary.scalar(loss_name, loss) return loss
Example #18
Source File: graphs.py From object_detection_kitti with Apache License 2.0 | 6 votes |
def _lm_loss(self, inputs, emb_key='lm_embedded', lstm_layer='lstm', lm_loss_layer='lm_loss', loss_name='lm_loss', compute_loss=True): embedded = self.layers['embedding'](inputs.tokens) self.tensors[emb_key] = embedded lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state, inputs.length) if compute_loss: loss = self.layers[lm_loss_layer]( [lstm_out, inputs.labels, inputs.weights]) with tf.control_dependencies([inputs.save_state(next_state)]): loss = tf.identity(loss) tf.summary.scalar(loss_name, loss) return loss
Example #19
Source File: graphs.py From DOTA_models with Apache License 2.0 | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput object in `self.cl_inputs` * Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False) self.cl_inputs = inputs embedded = self.layers['embedding'](inputs.tokens) self.tensors['cl_embedded'] = embedded _, next_state, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, inputs.labels, inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss tf.summary.scalar('total_classification_loss', total_loss) with tf.control_dependencies([inputs.save_state(next_state)]): total_loss = tf.identity(total_loss) return total_loss
Example #20
Source File: graphs.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def language_model_graph(self, compute_loss=True): """Constructs forward and reverse LM graphs from inputs to LM losses. * Caches the VatxtInput objects in `self.lm_inputs` * Caches tensors: `lm_embedded`, `lm_embedded_reverse` Args: compute_loss: bool, whether to compute and return the loss or stop after the LSTM computation. Returns: loss: scalar float, sum of forward and reverse losses. """ inputs = _inputs('train', pretrain=True, bidir=True) self.lm_inputs = inputs f_inputs, r_inputs = inputs f_loss = self._lm_loss(f_inputs, compute_loss=compute_loss) r_loss = self._lm_loss( r_inputs, emb_key='lm_embedded_reverse', lstm_layer='lstm_reverse', lm_loss_layer='lm_loss_reverse', loss_name='lm_loss_reverse', compute_loss=compute_loss) if compute_loss: return f_loss + r_loss
Example #21
Source File: graphs.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim] inputs: VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_state, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs lstm_out, next_state = self.layers['lstm'](embedded, inputs.state, inputs.length) logits = self.layers['cl_logits'](lstm_out) loss = layers_lib.classification_loss(logits, inputs.labels, inputs.weights) if return_intermediates: return lstm_out, next_state, logits, loss else: return loss
Example #22
Source File: graphs.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def eval_graph(self, dataset='test'): """Constructs classifier evaluation graph. Args: dataset: the labeled dataset to evaluate, {'train', 'test', 'valid'}. Returns: eval_ops: dict<metric name, tuple(value, update_op)> var_restore_dict: dict mapping variable restoration names to variables. Trainable variables will be mapped to their moving average names. """ inputs = _inputs(dataset, pretrain=False) embedded = self.layers['embedding'](inputs.tokens) _, next_state, logits, _ = self.cl_loss_from_embedding( embedded, inputs=inputs, return_intermediates=True) eval_ops = { 'accuracy': tf.contrib.metrics.streaming_accuracy( layers_lib.predictions(logits), inputs.labels, inputs.weights) } with tf.control_dependencies([inputs.save_state(next_state)]): acc, acc_update = eval_ops['accuracy'] acc_update = tf.identity(acc_update) eval_ops['accuracy'] = (acc, acc_update) var_restore_dict = make_restore_average_vars_dict() return eval_ops, var_restore_dict
Example #23
Source File: graphs.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: Length 2 tuple of 3-D float Tensor [batch_size, num_timesteps, embedding_dim]. inputs: Length 2 tuple of VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_states, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs out = [] for (layer_name, emb, inp) in zip(['lstm', 'lstm_reverse'], embedded, inputs): out.append(self.layers[layer_name](emb, inp.state, inp.length)) lstm_outs, next_states = zip(*out) # Concatenate output of forward and reverse LSTMs lstm_out = tf.concat(lstm_outs, 1) logits = self.layers['cl_logits'](lstm_out) f_inputs, _ = inputs # pylint: disable=unpacking-non-sequence loss = layers_lib.classification_loss(logits, f_inputs.labels, f_inputs.weights) if return_intermediates: return lstm_out, next_states, logits, loss else: return loss
Example #24
Source File: graphs.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def eval_graph(self, dataset='test'): """Constructs classifier evaluation graph. Args: dataset: the labeled dataset to evaluate, {'train', 'test', 'valid'}. Returns: eval_ops: dict<metric name, tuple(value, update_op)> var_restore_dict: dict mapping variable restoration names to variables. Trainable variables will be mapped to their moving average names. """ inputs = _inputs(dataset, pretrain=False, bidir=True) embedded = [self.layers['embedding'](inp.tokens) for inp in inputs] _, next_states, logits, _ = self.cl_loss_from_embedding( embedded, inputs=inputs, return_intermediates=True) f_inputs, _ = inputs eval_ops = { 'accuracy': tf.contrib.metrics.streaming_accuracy( layers_lib.predictions(logits), f_inputs.labels, f_inputs.weights) } # Save states on accuracy update saves = [inp.save_state(state) for (inp, state) in zip(inputs, next_states)] with tf.control_dependencies(saves): acc, acc_update = eval_ops['accuracy'] acc_update = tf.identity(acc_update) eval_ops['accuracy'] = (acc, acc_update) var_restore_dict = make_restore_average_vars_dict() return eval_ops, var_restore_dict
Example #25
Source File: graphs.py From models with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: Length 2 tuple of 3-D float Tensor [batch_size, num_timesteps, embedding_dim]. inputs: Length 2 tuple of VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_states, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs out = [] for (layer_name, emb, inp) in zip(['lstm', 'lstm_reverse'], embedded, inputs): out.append(self.layers[layer_name](emb, inp.state, inp.length)) lstm_outs, next_states = zip(*out) # Concatenate output of forward and reverse LSTMs lstm_out = tf.concat(lstm_outs, 1) logits = self.layers['cl_logits'](lstm_out) f_inputs, _ = inputs # pylint: disable=unpacking-non-sequence loss = layers_lib.classification_loss(logits, f_inputs.labels, f_inputs.weights) if return_intermediates: return lstm_out, next_states, logits, loss else: return loss
Example #26
Source File: graphs.py From object_detection_with_tensorflow with MIT License | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput object in `self.cl_inputs` * Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False) self.cl_inputs = inputs embedded = self.layers['embedding'](inputs.tokens) self.tensors['cl_embedded'] = embedded _, next_state, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, inputs.labels, inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss tf.summary.scalar('total_classification_loss', total_loss) with tf.control_dependencies([inputs.save_state(next_state)]): total_loss = tf.identity(total_loss) return total_loss
Example #27
Source File: graphs.py From models with Apache License 2.0 | 5 votes |
def eval_graph(self, dataset='test'): """Constructs classifier evaluation graph. Args: dataset: the labeled dataset to evaluate, {'train', 'test', 'valid'}. Returns: eval_ops: dict<metric name, tuple(value, update_op)> var_restore_dict: dict mapping variable restoration names to variables. Trainable variables will be mapped to their moving average names. """ inputs = _inputs(dataset, pretrain=False, bidir=True) embedded = [self.layers['embedding'](inp.tokens) for inp in inputs] _, next_states, logits, _ = self.cl_loss_from_embedding( embedded, inputs=inputs, return_intermediates=True) f_inputs, _ = inputs eval_ops = { 'accuracy': tf.contrib.metrics.streaming_accuracy( layers_lib.predictions(logits), f_inputs.labels, f_inputs.weights) } # Save states on accuracy update saves = [inp.save_state(state) for (inp, state) in zip(inputs, next_states)] with tf.control_dependencies(saves): acc, acc_update = eval_ops['accuracy'] acc_update = tf.identity(acc_update) eval_ops['accuracy'] = (acc, acc_update) var_restore_dict = make_restore_average_vars_dict() return eval_ops, var_restore_dict
Example #28
Source File: graphs.py From models with Apache License 2.0 | 5 votes |
def language_model_graph(self, compute_loss=True): """Constructs forward and reverse LM graphs from inputs to LM losses. * Caches the VatxtInput objects in `self.lm_inputs` * Caches tensors: `lm_embedded`, `lm_embedded_reverse` Args: compute_loss: bool, whether to compute and return the loss or stop after the LSTM computation. Returns: loss: scalar float, sum of forward and reverse losses. """ inputs = _inputs('train', pretrain=True, bidir=True) self.lm_inputs = inputs f_inputs, r_inputs = inputs f_loss = self._lm_loss(f_inputs, compute_loss=compute_loss) r_loss = self._lm_loss( r_inputs, emb_key='lm_embedded_reverse', lstm_layer='lstm_reverse', lm_loss_layer='lm_loss_reverse', loss_name='lm_loss_reverse', compute_loss=compute_loss) if compute_loss: return f_loss + r_loss
Example #29
Source File: graphs.py From object_detection_with_tensorflow with MIT License | 5 votes |
def language_model_graph(self, compute_loss=True): """Constructs forward and reverse LM graphs from inputs to LM losses. * Caches the VatxtInput objects in `self.lm_inputs` * Caches tensors: `lm_embedded`, `lm_embedded_reverse` Args: compute_loss: bool, whether to compute and return the loss or stop after the LSTM computation. Returns: loss: scalar float, sum of forward and reverse losses. """ inputs = _inputs('train', pretrain=True, bidir=True) self.lm_inputs = inputs f_inputs, r_inputs = inputs f_loss = self._lm_loss(f_inputs, compute_loss=compute_loss) r_loss = self._lm_loss( r_inputs, emb_key='lm_embedded_reverse', lstm_layer='lstm_reverse', lm_loss_layer='lm_loss_reverse', loss_name='lm_loss_reverse', compute_loss=compute_loss) if compute_loss: return f_loss + r_loss
Example #30
Source File: graphs.py From models with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim] inputs: VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_state, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs lstm_out, next_state = self.layers['lstm'](embedded, inputs.state, inputs.length) if FLAGS.single_label: indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1) lstm_out = tf.expand_dims(tf.gather_nd(lstm_out, indices), 1) labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1) weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1) else: labels = inputs.labels weights = inputs.weights logits = self.layers['cl_logits'](lstm_out) loss = layers_lib.classification_loss(logits, labels, weights) if return_intermediates: return lstm_out, next_state, logits, loss else: return loss