Python util.visualizer.Visualizer() Examples
The following are 6
code examples of util.visualizer.Visualizer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
util.visualizer
, or try the search function
.
Example #1
Source File: mtl_test.py From aerial_mtl with BSD 3-Clause "New" or "Revised" License | 6 votes |
def initialize(self, opt): self.opt = opt self.opt.imageSize = self.opt.imageSize if len(self.opt.imageSize) == 2 else self.opt.imageSize * 2 self.gpu_ids = '' self.batchSize = self.opt.batchSize self.checkpoints_path = os.path.join(self.opt.checkpoints, self.opt.name) self.create_save_folders() self.netG = self.load_network() # st() if 'vaihingen' not in self.opt.dataset_name: self.data_loader, _ = CreateDataLoader(opt) # visualizer self.visualizer = Visualizer(self.opt) if 'semantics' in self.opt.tasks: from util.util import get_color_palette self.opt.color_palette = np.array(get_color_palette(self.opt.dataset_name)) self.opt.color_palette = list(self.opt.color_palette.reshape(-1))
Example #2
Source File: train.py From DMIT with MIT License | 5 votes |
def main(): opt = TrainOptions().parse() data_loader = CreateDataLoader(opt) dataset_size = len(data_loader) * opt.batch_size visualizer = Visualizer(opt) model = create_model(opt) start_epoch = model.start_epoch total_steps = start_epoch*dataset_size for epoch in range(start_epoch+1, opt.niter+opt.niter_decay+1): epoch_start_time = time.time() model.update_lr() save_result = True for i, data in enumerate(data_loader): iter_start_time = time.time() total_steps += opt.batch_size epoch_iter = total_steps - dataset_size * (epoch - 1) model.prepare_data(data) model.update_model() if save_result or total_steps % opt.display_freq == 0: save_result = save_result or total_steps % opt.update_html_freq == 0 visualizer.display_current_results(model.get_current_visuals(), epoch, ncols=1, save_result=save_result) save_result = False if total_steps % opt.print_freq == 0: errors = model.get_current_errors() t = (time.time() - iter_start_time) / opt.batch_size visualizer.print_current_errors(epoch, epoch_iter, errors, t) if opt.display_id > 0: visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors) print('epoch {} cost dime {}'.format(epoch,time.time()-epoch_start_time)) model.save_ckpt(epoch) model.save_generator('latest') if epoch % opt.save_epoch_freq == 0: print('saving the generator at the end of epoch {}, iters {}'.format(epoch, total_steps)) model.save_generator(epoch)
Example #3
Source File: test_function.py From non-stationary_texture_syn with MIT License | 5 votes |
def test_func(opt_train, webpage, epoch='latest'): opt = copy.deepcopy(opt_train) print(opt) # specify the directory to save the results during training opt.results_dir = './results/' opt.isTrain = False opt.nThreads = 1 # test code only supports nThreads = 1 opt.batchSize = 1 # test code only supports batchSize = 1 opt.serial_batches = True # no shuffle opt.no_flip = True # no flip opt.dataroot = opt.dataroot + '/test' opt.model = 'test' opt.dataset_mode = 'single' opt.which_epoch = epoch opt.how_many = 50 opt.phase = 'test' # opt.name = name data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() model = create_model(opt) visualizer = Visualizer(opt) # create website # web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) # web_dir = os.path.join(opt.results_dir, opt.name) # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch)) # test for i, data in enumerate(dataset): if i >= opt.how_many: break model.set_input(data) model.test() visuals = model.get_current_visuals() img_path = model.get_image_paths() print('process image... %s' % img_path) visualizer.save_images_epoch(webpage, visuals, img_path, epoch) webpage.save()
Example #4
Source File: test_model_raster.py From aerial_mtl with BSD 3-Clause "New" or "Revised" License | 5 votes |
def initialize(self, opt): # GenericTestModel.initialize(self, opt) self.opt = opt self.get_color_palette() self.opt.imageSize = self.opt.imageSize if len(self.opt.imageSize) == 2 else self.opt.imageSize * 2 self.gpu_ids = '' self.batchSize = self.opt.batchSize self.checkpoints_path = os.path.join(self.opt.checkpoints, self.opt.name) self.create_save_folders() self.opt.use_semantics = (('multitask' in self.opt.model) or ('semantics' in self.opt.model)) self.netG = self.load_network() # self.opt.dfc_preprocessing = 2 # self.data_loader, _ = CreateDataLoader(opt, Dataset) # visualizer self.visualizer = Visualizer(self.opt) if 'semantics' in self.opt.tasks: from util.util import get_color_palette self.opt.color_palette = np.array(get_color_palette(self.opt.dataset_name)) # self.opt.color_palette = list(self.opt.color_palette.reshape(-1)) # st() # def initialize(self, opt): # GenericTestModel.initialize(self, opt) # self.get_color_palette()
Example #5
Source File: base_model.py From aerial_mtl with BSD 3-Clause "New" or "Revised" License | 4 votes |
def initialize(self, opt): self.opt = opt self.gpu_ids = '' self.batchSize = self.opt.batchSize self.checkpoints_path = os.path.join(self.opt.checkpoints, self.opt.name) self.create_save_folders() self.start_epoch = 1 self.best_val_error = 999.9 self.criterion_eval = nn.L1Loss() self.input = self.get_variable(torch.FloatTensor(self.batchSize, 3, self.opt.imageSize, self.opt.imageSize)) self.target = self.get_variable(torch.FloatTensor(self.batchSize, 1, self.opt.imageSize, self.opt.imageSize)) # self.logfile = # ToDo # visualizer self.visualizer = Visualizer(opt) # Logfile self.logfile = open(os.path.join(self.checkpoints_path, 'logfile.txt'), 'a') if opt.validate: self.logfile_val = open(os.path.join(self.checkpoints_path, 'logfile_val.txt'), 'a') # Prepare a random seed that will be the same for everyone opt.manualSeed = random.randint(1, 10000) # fix seed print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) if opt.cuda: torch.cuda.manual_seed(opt.manualSeed) # uses the inbuilt cudnn auto-tuner to find the fastest convolution algorithms. cudnn.benchmark = True cudnn.enabled = True if not opt.train and not opt.test: raise Exception("You have to set --train or --test") if torch.cuda.is_available and not opt.cuda: print("WARNING: You have a CUDA device, so you should run WITHOUT --cpu") if not torch.cuda.is_available and opt.cuda: raise Exception("No GPU found, run WITH --cpu")
Example #6
Source File: train.py From SingleGAN with MIT License | 4 votes |
def main(): opt = TrainOptions().parse() data_loader = CreateDataLoader(opt) dataset_size = len(data_loader) * opt.batchSize visualizer = Visualizer(opt) model = SingleGAN() model.initialize(opt) total_steps = 0 lr = opt.lr for epoch in range(1, opt.niter + opt.niter_decay + 1): epoch_start_time = time.time() save_result = True for i, data in enumerate(data_loader): iter_start_time = time.time() total_steps += opt.batchSize epoch_iter = total_steps - dataset_size * (epoch - 1) model.update_model(data) if save_result or total_steps % opt.display_freq == 0: save_result = save_result or total_steps % opt.update_html_freq == 0 print('mode:{} dataset:{}'.format(opt.mode,opt.name)) visualizer.display_current_results(model.get_current_visuals(), epoch, ncols=1, save_result=save_result) save_result = False if total_steps % opt.print_freq == 0: errors = model.get_current_errors() t = (time.time() - iter_start_time) / opt.batchSize visualizer.print_current_errors(epoch, epoch_iter, errors, t) if opt.display_id > 0: visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors) if total_steps % opt.save_latest_freq == 0: print('saving the latest model (epoch %d, total_steps %d)' %(epoch, total_steps)) model.save('latest') if epoch % opt.save_epoch_freq == 0: print('saving the model at the end of epoch %d, iters %d' %(epoch, total_steps)) model.save('latest') model.save(epoch) if epoch > opt.niter: lr -= opt.lr / opt.niter_decay model.update_lr(lr)