Python object_detection.protos.optimizer_pb2.Optimizer() Examples
The following are 30
code examples of object_detection.protos.optimizer_pb2.Optimizer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.protos.optimizer_pb2
, or try the search function
.
Example #1
Source File: optimizer_builder_test.py From tensorflow with BSD 2-Clause "Simplified" License | 6 votes |
def testBuildMovingAverageOptimizerWithNonDefaultDecay(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True moving_average_decay: 0.2 """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer)) # TODO: Find a way to not depend on the private members. self.assertAlmostEqual(optimizer._ema._decay, 0.2)
Example #2
Source File: optimizer_builder_test.py From ros_tensorflow with Apache License 2.0 | 6 votes |
def testBuildMomentumOptimizer(self): optimizer_text_proto = """ momentum_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.001 } } momentum_optimizer_value: 0.99 } use_moving_average: false """ optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer, _ = optimizer_builder.build(optimizer_proto) self.assertTrue(isinstance(optimizer, tf.train.MomentumOptimizer))
Example #3
Source File: optimizer_builder_test.py From moveo_ros with MIT License | 6 votes |
def testBuildMomentumOptimizer(self): optimizer_text_proto = """ momentum_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.001 } } momentum_optimizer_value: 0.99 } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.MomentumOptimizer))
Example #4
Source File: optimizer_builder_test.py From moveo_ros with MIT License | 6 votes |
def testBuildAdamOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.AdamOptimizer))
Example #5
Source File: optimizer_builder_test.py From moveo_ros with MIT License | 6 votes |
def testBuildMovingAverageOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer))
Example #6
Source File: optimizer_builder_test.py From moveo_ros with MIT License | 6 votes |
def testBuildMovingAverageOptimizerWithNonDefaultDecay(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True moving_average_decay: 0.2 """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer)) # TODO: Find a way to not depend on the private members. self.assertAlmostEqual(optimizer._ema._decay, 0.2)
Example #7
Source File: optimizer_builder_test.py From hands-detection with MIT License | 6 votes |
def testBuildRMSPropOptimizer(self): optimizer_text_proto = """ rms_prop_optimizer: { learning_rate: { exponential_decay_learning_rate { initial_learning_rate: 0.004 decay_steps: 800720 decay_factor: 0.95 } } momentum_optimizer_value: 0.9 decay: 0.9 epsilon: 1.0 } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.RMSPropOptimizer))
Example #8
Source File: optimizer_builder_test.py From hands-detection with MIT License | 6 votes |
def testBuildMomentumOptimizer(self): optimizer_text_proto = """ momentum_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.001 } } momentum_optimizer_value: 0.99 } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.MomentumOptimizer))
Example #9
Source File: optimizer_builder_test.py From hands-detection with MIT License | 6 votes |
def testBuildAdamOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.AdamOptimizer))
Example #10
Source File: optimizer_builder_test.py From hands-detection with MIT License | 6 votes |
def testBuildMovingAverageOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer))
Example #11
Source File: optimizer_builder_test.py From hands-detection with MIT License | 6 votes |
def testBuildMovingAverageOptimizerWithNonDefaultDecay(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True moving_average_decay: 0.2 """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer)) # TODO: Find a way to not depend on the private members. self.assertAlmostEqual(optimizer._ema._decay, 0.2)
Example #12
Source File: optimizer_builder_test.py From moveo_ros with MIT License | 6 votes |
def testBuildRMSPropOptimizer(self): optimizer_text_proto = """ rms_prop_optimizer: { learning_rate: { exponential_decay_learning_rate { initial_learning_rate: 0.004 decay_steps: 800720 decay_factor: 0.95 } } momentum_optimizer_value: 0.9 decay: 0.9 epsilon: 1.0 } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.RMSPropOptimizer))
Example #13
Source File: optimizer_builder_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def testBuildMovingAverageOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True """ optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer, _ = optimizer_builder.build(optimizer_proto) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer))
Example #14
Source File: optimizer_builder_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def testBuildMomentumOptimizer(self): optimizer_text_proto = """ momentum_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.001 } } momentum_optimizer_value: 0.99 } use_moving_average: false """ optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer, _ = optimizer_builder.build(optimizer_proto) self.assertTrue(isinstance(optimizer, tf.train.MomentumOptimizer))
Example #15
Source File: optimizer_builder_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def testBuildRMSPropOptimizer(self): optimizer_text_proto = """ rms_prop_optimizer: { learning_rate: { exponential_decay_learning_rate { initial_learning_rate: 0.004 decay_steps: 800720 decay_factor: 0.95 } } momentum_optimizer_value: 0.9 decay: 0.9 epsilon: 1.0 } use_moving_average: false """ optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer, _ = optimizer_builder.build(optimizer_proto) self.assertTrue(isinstance(optimizer, tf.train.RMSPropOptimizer))
Example #16
Source File: optimizer_builder_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def testBuildMovingAverageOptimizerWithNonDefaultDecay(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True moving_average_decay: 0.2 """ optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer, _ = optimizer_builder.build(optimizer_proto) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer)) # TODO(rathodv): Find a way to not depend on the private members. self.assertAlmostEqual(optimizer._ema._decay, 0.2)
Example #17
Source File: optimizer_builder_test.py From tensorflow with BSD 2-Clause "Simplified" License | 6 votes |
def testBuildMovingAverageOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer))
Example #18
Source File: optimizer_builder_test.py From tensorflow with BSD 2-Clause "Simplified" License | 6 votes |
def testBuildAdamOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.AdamOptimizer))
Example #19
Source File: optimizer_builder_test.py From tensorflow with BSD 2-Clause "Simplified" License | 6 votes |
def testBuildMomentumOptimizer(self): optimizer_text_proto = """ momentum_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.001 } } momentum_optimizer_value: 0.99 } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.MomentumOptimizer))
Example #20
Source File: optimizer_builder_test.py From tensorflow with BSD 2-Clause "Simplified" License | 6 votes |
def testBuildRMSPropOptimizer(self): optimizer_text_proto = """ rms_prop_optimizer: { learning_rate: { exponential_decay_learning_rate { initial_learning_rate: 0.004 decay_steps: 800720 decay_factor: 0.95 } } momentum_optimizer_value: 0.9 decay: 0.9 epsilon: 1.0 } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.RMSPropOptimizer))
Example #21
Source File: optimizer_builder_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def testBuildMovingAverageOptimizerWithNonDefaultDecay(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True moving_average_decay: 0.2 """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer)) # TODO: Find a way to not depend on the private members. self.assertAlmostEqual(optimizer._ema._decay, 0.2)
Example #22
Source File: optimizer_builder_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def testBuildMovingAverageOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer))
Example #23
Source File: optimizer_builder_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def testBuildAdamOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.AdamOptimizer))
Example #24
Source File: optimizer_builder_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def testBuildMomentumOptimizer(self): optimizer_text_proto = """ momentum_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.001 } } momentum_optimizer_value: 0.99 } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.MomentumOptimizer))
Example #25
Source File: optimizer_builder_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def testBuildRMSPropOptimizer(self): optimizer_text_proto = """ rms_prop_optimizer: { learning_rate: { exponential_decay_learning_rate { initial_learning_rate: 0.004 decay_steps: 800720 decay_factor: 0.95 } } momentum_optimizer_value: 0.9 decay: 0.9 epsilon: 1.0 } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.RMSPropOptimizer))
Example #26
Source File: optimizer_builder_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 6 votes |
def testBuildMovingAverageOptimizerWithNonDefaultDecay(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True moving_average_decay: 0.2 """ optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer, _ = optimizer_builder.build(optimizer_proto) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer)) # TODO: Find a way to not depend on the private members. self.assertAlmostEqual(optimizer._ema._decay, 0.2)
Example #27
Source File: optimizer_builder_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 6 votes |
def testBuildMovingAverageOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True """ optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer, _ = optimizer_builder.build(optimizer_proto) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer))
Example #28
Source File: optimizer_builder_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 6 votes |
def testBuildMomentumOptimizer(self): optimizer_text_proto = """ momentum_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.001 } } momentum_optimizer_value: 0.99 } use_moving_average: false """ optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer, _ = optimizer_builder.build(optimizer_proto) self.assertTrue(isinstance(optimizer, tf.train.MomentumOptimizer))
Example #29
Source File: optimizer_builder_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testBuildRMSPropOptimizer(self): optimizer_text_proto = """ rms_prop_optimizer: { learning_rate: { exponential_decay_learning_rate { initial_learning_rate: 0.004 decay_steps: 800720 decay_factor: 0.95 } } momentum_optimizer_value: 0.9 decay: 0.9 epsilon: 1.0 } use_moving_average: false """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue(isinstance(optimizer, tf.train.RMSPropOptimizer))
Example #30
Source File: optimizer_builder_test.py From yolo_v2 with Apache License 2.0 | 6 votes |
def testBuildMovingAverageOptimizerWithNonDefaultDecay(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True moving_average_decay: 0.2 """ global_summaries = set([]) optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer = optimizer_builder.build(optimizer_proto, global_summaries) self.assertTrue( isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer)) # TODO(rathodv): Find a way to not depend on the private members. self.assertAlmostEqual(optimizer._ema._decay, 0.2)