Python keras.optimizers.deserialize() Examples
The following are 13
code examples of keras.optimizers.deserialize().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.optimizers
, or try the search function
.
Example #1
Source File: workers.py From dist-keras with GNU General Public License v3.0 | 6 votes |
def prepare_model(self): """Prepares the model for training.""" # Set the Keras directory. set_keras_base_directory() if K.backend() == 'tensorflow': # set GPU option allow_growth to False for GPU-enabled tensorflow config = tf.ConfigProto() config.gpu_options.allow_growth = False sess = tf.Session(config=config) K.set_session(sess) # Deserialize the Keras model. self.model = deserialize_keras_model(self.model) self.optimizer = deserialize(self.optimizer) # Compile the model with the specified loss and optimizer. self.model.compile(loss=self.loss, loss_weights = self.loss_weights, optimizer=self.optimizer, metrics=self.metrics)
Example #2
Source File: optimizers.py From keras-contrib with MIT License | 5 votes |
def _test_optimizer(optimizer, target=0.75): x_train, y_train = get_test_data() model = get_model(x_train.shape[1], 10, y_train.shape[1]) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0) assert history.history['acc'][-1] >= target config = optimizers.serialize(optimizer) custom_objects = {optimizer.__class__.__name__: optimizer.__class__} optim = optimizers.deserialize(config, custom_objects) new_config = optimizers.serialize(optim) assert config == new_config
Example #3
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _test_optimizer(optimizer, target=0.75): x_train, y_train = get_test_data() model = Sequential() model.add(Dense(10, input_shape=(x_train.shape[1],))) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0) assert history.history['acc'][-1] >= target config = optimizers.serialize(optimizer) optim = optimizers.deserialize(config) new_config = optimizers.serialize(optim) new_config['class_name'] = new_config['class_name'].lower() assert config == new_config # Test constraints. model = Sequential() dense = Dense(10, input_shape=(x_train.shape[1],), kernel_constraint=lambda x: 0. * x + 1., bias_constraint=lambda x: 0. * x + 2.,) model.add(dense) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.train_on_batch(x_train[:10], y_train[:10]) kernel, bias = dense.get_weights() assert_allclose(kernel, 1.) assert_allclose(bias, 2.)
Example #4
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _test_optimizer(optimizer, target=0.75): x_train, y_train = get_test_data() model = Sequential() model.add(Dense(10, input_shape=(x_train.shape[1],))) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0) assert history.history['acc'][-1] >= target config = optimizers.serialize(optimizer) optim = optimizers.deserialize(config) new_config = optimizers.serialize(optim) new_config['class_name'] = new_config['class_name'].lower() assert config == new_config # Test constraints. model = Sequential() dense = Dense(10, input_shape=(x_train.shape[1],), kernel_constraint=lambda x: 0. * x + 1., bias_constraint=lambda x: 0. * x + 2.,) model.add(dense) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.train_on_batch(x_train[:10], y_train[:10]) kernel, bias = dense.get_weights() assert_allclose(kernel, 1.) assert_allclose(bias, 2.)
Example #5
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _test_optimizer(optimizer, target=0.75): x_train, y_train = get_test_data() model = Sequential() model.add(Dense(10, input_shape=(x_train.shape[1],))) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0) assert history.history['acc'][-1] >= target config = optimizers.serialize(optimizer) optim = optimizers.deserialize(config) new_config = optimizers.serialize(optim) new_config['class_name'] = new_config['class_name'].lower() assert config == new_config # Test constraints. model = Sequential() dense = Dense(10, input_shape=(x_train.shape[1],), kernel_constraint=lambda x: 0. * x + 1., bias_constraint=lambda x: 0. * x + 2.,) model.add(dense) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.train_on_batch(x_train[:10], y_train[:10]) kernel, bias = dense.get_weights() assert_allclose(kernel, 1.) assert_allclose(bias, 2.)
Example #6
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _test_optimizer(optimizer, target=0.75): x_train, y_train = get_test_data() model = Sequential() model.add(Dense(10, input_shape=(x_train.shape[1],))) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0) assert history.history['acc'][-1] >= target config = optimizers.serialize(optimizer) optim = optimizers.deserialize(config) new_config = optimizers.serialize(optim) new_config['class_name'] = new_config['class_name'].lower() assert config == new_config # Test constraints. model = Sequential() dense = Dense(10, input_shape=(x_train.shape[1],), kernel_constraint=lambda x: 0. * x + 1., bias_constraint=lambda x: 0. * x + 2.,) model.add(dense) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.train_on_batch(x_train[:10], y_train[:10]) kernel, bias = dense.get_weights() assert_allclose(kernel, 1.) assert_allclose(bias, 2.)
Example #7
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _test_optimizer(optimizer, target=0.75): x_train, y_train = get_test_data() model = Sequential() model.add(Dense(10, input_shape=(x_train.shape[1],))) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0) assert history.history['acc'][-1] >= target config = optimizers.serialize(optimizer) optim = optimizers.deserialize(config) new_config = optimizers.serialize(optim) new_config['class_name'] = new_config['class_name'].lower() assert config == new_config # Test constraints. model = Sequential() dense = Dense(10, input_shape=(x_train.shape[1],), kernel_constraint=lambda x: 0. * x + 1., bias_constraint=lambda x: 0. * x + 2.,) model.add(dense) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.train_on_batch(x_train[:10], y_train[:10]) kernel, bias = dense.get_weights() assert_allclose(kernel, 1.) assert_allclose(bias, 2.)
Example #8
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _test_optimizer(optimizer, target=0.75): x_train, y_train = get_test_data() model = Sequential() model.add(Dense(10, input_shape=(x_train.shape[1],))) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0) assert history.history['acc'][-1] >= target config = optimizers.serialize(optimizer) optim = optimizers.deserialize(config) new_config = optimizers.serialize(optim) new_config['class_name'] = new_config['class_name'].lower() assert config == new_config # Test constraints. model = Sequential() dense = Dense(10, input_shape=(x_train.shape[1],), kernel_constraint=lambda x: 0. * x + 1., bias_constraint=lambda x: 0. * x + 2.,) model.add(dense) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.train_on_batch(x_train[:10], y_train[:10]) kernel, bias = dense.get_weights() assert_allclose(kernel, 1.) assert_allclose(bias, 2.)
Example #9
Source File: optimizers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _test_optimizer(optimizer, target=0.75): x_train, y_train = get_test_data() model = Sequential() model.add(Dense(10, input_shape=(x_train.shape[1],))) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0) assert history.history['acc'][-1] >= target config = optimizers.serialize(optimizer) optim = optimizers.deserialize(config) new_config = optimizers.serialize(optim) new_config['class_name'] = new_config['class_name'].lower() assert config == new_config # Test constraints. model = Sequential() dense = Dense(10, input_shape=(x_train.shape[1],), kernel_constraint=lambda x: 0. * x + 1., bias_constraint=lambda x: 0. * x + 2.,) model.add(dense) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.train_on_batch(x_train[:10], y_train[:10]) kernel, bias = dense.get_weights() assert_allclose(kernel, 1.) assert_allclose(bias, 2.)
Example #10
Source File: optimizers_test.py From faceswap with GNU General Public License v3.0 | 5 votes |
def _test_optimizer(optimizer, target=0.75): x_train, y_train = get_test_data() model = Sequential() model.add(Dense(10, input_shape=(x_train.shape[1],))) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=2, batch_size=16, verbose=0) # TODO PlaidML fails this test assert history.history['acc'][-1] >= target config = k_optimizers.serialize(optimizer) optim = k_optimizers.deserialize(config) new_config = k_optimizers.serialize(optim) new_config['class_name'] = new_config['class_name'].lower() assert config == new_config # Test constraints. model = Sequential() dense = Dense(10, input_shape=(x_train.shape[1],), kernel_constraint=lambda x: 0. * x + 1., bias_constraint=lambda x: 0. * x + 2.,) model.add(dense) model.add(Activation('relu')) model.add(Dense(y_train.shape[1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.train_on_batch(x_train[:10], y_train[:10]) kernel, bias = dense.get_weights() assert_allclose(kernel, 1.) assert_allclose(bias, 2.)
Example #11
Source File: util.py From keras-rl with MIT License | 5 votes |
def clone_optimizer(optimizer): if type(optimizer) is str: return optimizers.get(optimizer) # Requires Keras 1.0.7 since get_config has breaking changes. params = dict([(k, v) for k, v in optimizer.get_config().items()]) config = { 'class_name': optimizer.__class__.__name__, 'config': params, } if hasattr(optimizers, 'optimizer_from_config'): # COMPATIBILITY: Keras < 2.0 clone = optimizers.optimizer_from_config(config) else: clone = optimizers.deserialize(config) return clone
Example #12
Source File: optimizer.py From mpi_learn with GNU General Public License v3.0 | 5 votes |
def build(self): from keras.optimizers import deserialize opt_config = {'class_name': self.name, 'config': self.config} opt = deserialize(opt_config) if self.horovod_wrapper: import horovod.keras as hvd if hasattr(opt, 'lr'): opt.lr *= hvd.size() opt = hvd.DistributedOptimizer(opt) return opt
Example #13
Source File: l2optimizer.py From DIIN-in-Keras with MIT License | 5 votes |
def from_config(cls, config, custom_objects=None): optimizer_config = config.pop('optimizer') optimizer = deserialize(optimizer_config) return cls(optimizer=optimizer, **config)