Python tensorflow.contrib.layers.python.layers.layers.fully_connected() Examples
The following are 30
code examples of tensorflow.contrib.layers.python.layers.layers.fully_connected().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.layers.python.layers.layers
, or try the search function
.
Example #1
Source File: vgg16.py From Chinese-Character-and-Calligraphic-Image-Processing with MIT License | 6 votes |
def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, weights_regularizer=regularizers.l2_regularizer(weight_decay), biases_initializer=init_ops.zeros_initializer()): with arg_scope([layers.conv2d], padding='SAME') as arg_sc: return arg_sc
Example #2
Source File: vgg.py From keras-lambda with MIT License | 6 votes |
def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, weights_regularizer=regularizers.l2_regularizer(weight_decay), biases_initializer=init_ops.zeros_initializer()): with arg_scope([layers.conv2d], padding='SAME') as arg_sc: return arg_sc
Example #3
Source File: truncated_vgg.py From luminoth with BSD 3-Clause "New" or "Revised" License | 6 votes |
def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, weights_regularizer=regularizers.l2_regularizer(weight_decay), biases_initializer=init_ops.zeros_initializer() ): with arg_scope([layers.conv2d], padding='SAME') as arg_sc: return arg_sc
Example #4
Source File: truncated_vgg.py From Tabulo with BSD 3-Clause "New" or "Revised" License | 6 votes |
def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, weights_regularizer=regularizers.l2_regularizer(weight_decay), biases_initializer=init_ops.zeros_initializer() ): with arg_scope([layers.conv2d], padding='SAME') as arg_sc: return arg_sc
Example #5
Source File: truncated_vgg.py From Table-Detection-using-Deep-learning with BSD 3-Clause "New" or "Revised" License | 6 votes |
def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, weights_regularizer=regularizers.l2_regularizer(weight_decay), biases_initializer=init_ops.zeros_initializer() ): with arg_scope([layers.conv2d], padding='SAME') as arg_sc: return arg_sc
Example #6
Source File: util.py From predictron with MIT License | 6 votes |
def predictron_arg_scope(weight_decay=0.0001, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True): batch_norm_params = { 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'updates_collections': tf.GraphKeys.UPDATE_OPS, } # Set weight_decay for weights in Conv and FC layers. with arg_scope( [layers.conv2d, layers_lib.fully_connected], weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope( [layers.conv2d], weights_initializer=initializers.variance_scaling_initializer(), activation_fn=None, normalizer_fn=layers_lib.batch_norm, normalizer_params=batch_norm_params) as sc: return sc
Example #7
Source File: vgg.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, weights_regularizer=regularizers.l2_regularizer(weight_decay), biases_initializer=init_ops.zeros_initializer()): with arg_scope([layers.conv2d], padding='SAME') as arg_sc: return arg_sc
Example #8
Source File: vgg.py From lambda-packs with MIT License | 6 votes |
def vgg_arg_scope(weight_decay=0.0005): """Defines the VGG arg scope. Args: weight_decay: The l2 regularization coefficient. Returns: An arg_scope. """ with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, weights_regularizer=regularizers.l2_regularizer(weight_decay), biases_initializer=init_ops.zeros_initializer()): with arg_scope([layers.conv2d], padding='SAME') as arg_sc: return arg_sc
Example #9
Source File: batch_norm.py From TwinGAN with Apache License 2.0 | 5 votes |
def get_conditional_batch_norm_param(conditional_layer, output_dim, scope='gamma', activation_fn=None): """Outputs the batch norm parameter transformed from the `conditional_layer` using a fully connected layer.""" if conditional_layer is None: raise ValueError('`conditional_layer` must not be None.') return layers.fully_connected(conditional_layer, output_dim, scope=scope, activation_fn=activation_fn)
Example #10
Source File: trainer_test.py From monopsr with MIT License | 5 votes |
def BatchNormClassifier(self, inputs): inputs = layers.batch_norm(inputs, decay=0.1, fused=None) return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid)
Example #11
Source File: alexnet_v2.py From Chinese-Character-and-Calligraphic-Image-Processing with MIT License | 5 votes |
def alexnet_v2_arg_scope(weight_decay=0.0005): with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, biases_initializer=init_ops.constant_initializer(0.1), weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope([layers.conv2d], padding='SAME'): with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc: return arg_sc
Example #12
Source File: trainer_test.py From avod-ssd with MIT License | 5 votes |
def BatchNormClassifier(self, inputs): inputs = layers.batch_norm(inputs, decay=0.1, fused=None) return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid)
Example #13
Source File: inception_v2.py From Chinese-Character-and-Calligraphic-Image-Processing with MIT License | 5 votes |
def inception_v2_arg_scope(weight_decay=0.00004, batch_norm_var_collection='moving_vars'): """Defines the default InceptionV2 arg scope. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_var_collection: The name of the collection for the batch norm variables. Returns: An `arg_scope` to use for the inception v3 model. """ batch_norm_params = { # Decay for the moving averages. 'decay': 0.9997, # epsilon to prevent 0s in variance. 'epsilon': 0.001, # collection containing update_ops. 'updates_collections': ops.GraphKeys.UPDATE_OPS, # collection containing the moving mean and moving variance. 'variables_collections': { 'beta': None, 'gamma': None, 'moving_mean': [batch_norm_var_collection], 'moving_variance': [batch_norm_var_collection], } } # Set weight_decay for weights in Conv and FC layers. with arg_scope( [layers.conv2d, layers_lib.fully_connected], weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope( [layers.conv2d], weights_initializer=initializers.variance_scaling_initializer(), activation_fn=nn_ops.relu, normalizer_fn=layers_lib.batch_norm, normalizer_params=batch_norm_params) as sc: return sc
Example #14
Source File: learning_test.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def BatchNormClassifier(inputs): inputs = layers.batch_norm(inputs, decay=0.1) return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid)
Example #15
Source File: learning_test.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def LogisticClassifier(inputs): return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid)
Example #16
Source File: alexnet.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def alexnet_v2_arg_scope(weight_decay=0.0005): with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, biases_initializer=init_ops.constant_initializer(0.1), weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope([layers.conv2d], padding='SAME'): with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc: return arg_sc
Example #17
Source File: overfeat.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def overfeat_arg_scope(weight_decay=0.0005): with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, weights_regularizer=regularizers.l2_regularizer(weight_decay), biases_initializer=init_ops.zeros_initializer()): with arg_scope([layers.conv2d], padding='SAME'): with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc: return arg_sc
Example #18
Source File: trainer_test.py From avod with MIT License | 5 votes |
def BatchNormClassifier(self, inputs): inputs = layers.batch_norm(inputs, decay=0.1, fused=None) return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid)
Example #19
Source File: overfeat.py From keras-lambda with MIT License | 5 votes |
def overfeat_arg_scope(weight_decay=0.0005): with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, weights_regularizer=regularizers.l2_regularizer(weight_decay), biases_initializer=init_ops.zeros_initializer()): with arg_scope([layers.conv2d], padding='SAME'): with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc: return arg_sc
Example #20
Source File: alexnet.py From keras-lambda with MIT License | 5 votes |
def alexnet_v2_arg_scope(weight_decay=0.0005): with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, biases_initializer=init_ops.constant_initializer(0.1), weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope([layers.conv2d], padding='SAME'): with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc: return arg_sc
Example #21
Source File: alexnet.py From lambda-packs with MIT License | 5 votes |
def alexnet_v2_arg_scope(weight_decay=0.0005): with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, biases_initializer=init_ops.constant_initializer(0.1), weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope([layers.conv2d], padding='SAME'): with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc: return arg_sc
Example #22
Source File: overfeat.py From lambda-packs with MIT License | 5 votes |
def overfeat_arg_scope(weight_decay=0.0005): with arg_scope( [layers.conv2d, layers_lib.fully_connected], activation_fn=nn_ops.relu, weights_regularizer=regularizers.l2_regularizer(weight_decay), biases_initializer=init_ops.zeros_initializer()): with arg_scope([layers.conv2d], padding='SAME'): with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc: return arg_sc
Example #23
Source File: learning_test.py From keras-lambda with MIT License | 5 votes |
def LogisticClassifier(inputs): return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid)
Example #24
Source File: learning_test.py From keras-lambda with MIT License | 5 votes |
def BatchNormClassifier(inputs): inputs = layers.batch_norm(inputs, decay=0.1) return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid)
Example #25
Source File: truncated_vgg.py From Tabulo with BSD 3-Clause "New" or "Revised" License | 4 votes |
def truncated_vgg_16(inputs, is_training=True, scope='vgg_16'): """Oxford Net VGG 16-Layers version D Example. For use in SSD object detection network, which has this particular truncated version of VGG16 detailed in its paper. Args: inputs: a tensor of size [batch_size, height, width, channels]. scope: Optional scope for the variables. Returns: the last op containing the conv5 tensor and end_points dict. """ with variable_scope.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with arg_scope( [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d], outputs_collections=end_points_collection ): net = layers_lib.repeat( inputs, 2, layers.conv2d, 64, [3, 3], scope='conv1') net = layers_lib.max_pool2d(net, [2, 2], scope='pool1') net = layers_lib.repeat( net, 2, layers.conv2d, 128, [3, 3], scope='conv2' ) net = layers_lib.max_pool2d(net, [2, 2], scope='pool2') net = layers_lib.repeat( net, 3, layers.conv2d, 256, [3, 3], scope='conv3' ) net = layers_lib.max_pool2d(net, [2, 2], scope='pool3') net = layers_lib.repeat( net, 3, layers.conv2d, 512, [3, 3], scope='conv4' ) net = layers_lib.max_pool2d(net, [2, 2], scope='pool4') net = layers_lib.repeat( net, 3, layers.conv2d, 512, [3, 3], scope='conv5' ) # Convert end_points_collection into a end_point dict. end_points = utils.convert_collection_to_dict( end_points_collection ) return net, end_points
Example #26
Source File: vgg16.py From Chinese-Character-and-Calligraphic-Image-Processing with MIT License | 4 votes |
def vgg_a(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_a'): """Oxford Net VGG 11-Layers version A Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. Returns: the last op containing the log predictions and end_points dict. """ with variable_scope.variable_scope(scope, 'vgg_a', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with arg_scope( [layers.conv2d, layers_lib.max_pool2d], outputs_collections=end_points_collection): net = layers_lib.repeat( inputs, 1, layers.conv2d, 64, [3, 3], scope='conv1') net = layers_lib.max_pool2d(net, [2, 2], scope='pool1') net = layers_lib.repeat(net, 1, layers.conv2d, 128, [3, 3], scope='conv2') net = layers_lib.max_pool2d(net, [2, 2], scope='pool2') net = layers_lib.repeat(net, 2, layers.conv2d, 256, [3, 3], scope='conv3') net = layers_lib.max_pool2d(net, [2, 2], scope='pool3') net = layers_lib.repeat(net, 2, layers.conv2d, 512, [3, 3], scope='conv4') net = layers_lib.max_pool2d(net, [2, 2], scope='pool4') net = layers_lib.repeat(net, 2, layers.conv2d, 512, [3, 3], scope='conv5') net = layers_lib.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = layers.conv2d(net, 4096, [7, 7], padding='VALID', scope='fc6') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = layers.conv2d(net, 4096, [1, 1], scope='fc7') net = layers_lib.dropout( net, dropout_keep_prob, is_training=is_training, scope='dropout7') net = layers.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') # Convert end_points_collection into a end_point dict. end_points = utils.convert_collection_to_dict(end_points_collection) if spatial_squeeze: net = array_ops.squeeze(net, [1, 2], name='fc8/squeezed') end_points[sc.name + '/fc8'] = net return net, end_points
Example #27
Source File: inception_v3.py From nips-2017-adversarial with MIT License | 4 votes |
def inception_v3_arg_scope(weight_decay=0.00004, stddev=0.1, batch_norm_var_collection='moving_vars'): """Defines the default InceptionV3 arg scope. Args: weight_decay: The weight decay to use for regularizing the model. stddev: The standard deviation of the trunctated normal weight initializer. batch_norm_var_collection: The name of the collection for the batch norm variables. Returns: An `arg_scope` to use for the inception v3 model. """ batch_norm_params = { # Decay for the moving averages. 'decay': 0.9997, # epsilon to prevent 0s in variance. 'epsilon': 0.001, # collection containing update_ops. 'updates_collections': ops.GraphKeys.UPDATE_OPS, # collection containing the moving mean and moving variance. 'variables_collections': { 'beta': None, 'gamma': None, 'moving_mean': [batch_norm_var_collection], 'moving_variance': [batch_norm_var_collection], } } # Set weight_decay for weights in Conv and FC layers. with arg_scope( [layers.conv2d, layers_lib.fully_connected], weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope( [layers.conv2d], weights_initializer=init_ops.truncated_normal_initializer( stddev=stddev), activation_fn=nn_ops.relu, normalizer_fn=layers_lib.batch_norm, normalizer_params=batch_norm_params) as sc: return sc
Example #28
Source File: truncated_vgg.py From luminoth with BSD 3-Clause "New" or "Revised" License | 4 votes |
def truncated_vgg_16(inputs, is_training=True, scope='vgg_16'): """Oxford Net VGG 16-Layers version D Example. For use in SSD object detection network, which has this particular truncated version of VGG16 detailed in its paper. Args: inputs: a tensor of size [batch_size, height, width, channels]. scope: Optional scope for the variables. Returns: the last op containing the conv5 tensor and end_points dict. """ with variable_scope.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.original_name_scope + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with arg_scope( [layers.conv2d, layers_lib.fully_connected, layers_lib.max_pool2d], outputs_collections=end_points_collection ): net = layers_lib.repeat( inputs, 2, layers.conv2d, 64, [3, 3], scope='conv1') net = layers_lib.max_pool2d(net, [2, 2], scope='pool1') net = layers_lib.repeat( net, 2, layers.conv2d, 128, [3, 3], scope='conv2' ) net = layers_lib.max_pool2d(net, [2, 2], scope='pool2') net = layers_lib.repeat( net, 3, layers.conv2d, 256, [3, 3], scope='conv3' ) net = layers_lib.max_pool2d(net, [2, 2], scope='pool3') net = layers_lib.repeat( net, 3, layers.conv2d, 512, [3, 3], scope='conv4' ) net = layers_lib.max_pool2d(net, [2, 2], scope='pool4') net = layers_lib.repeat( net, 3, layers.conv2d, 512, [3, 3], scope='conv5' ) # Convert end_points_collection into a end_point dict. end_points = utils.convert_collection_to_dict( end_points_collection ) return net, end_points
Example #29
Source File: inception_v2_tpu_model.py From class-balanced-loss with MIT License | 4 votes |
def inception_v2_arg_scope(weight_decay=0.00004, batch_norm_var_collection='moving_vars', batch_norm_decay=0.9997, batch_norm_epsilon=0.001, updates_collections=ops.GraphKeys.UPDATE_OPS, use_fused_batchnorm=True): """Defines the default InceptionV2 arg scope. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_var_collection: The name of the collection for the batch norm variables. batch_norm_decay: Decay for batch norm moving average batch_norm_epsilon: Small float added to variance to avoid division by zero updates_collections: Collections for the update ops of the layer use_fused_batchnorm: Enable fused batchnorm. Returns: An `arg_scope` to use for the inception v3 model. """ batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, # collection containing update_ops. 'updates_collections': updates_collections, # Enable fused batchnorm. 'fused': use_fused_batchnorm, # collection containing the moving mean and moving variance. 'variables_collections': { 'beta': None, 'gamma': None, 'moving_mean': [batch_norm_var_collection], 'moving_variance': [batch_norm_var_collection], } } # Set weight_decay for weights in Conv and FC layers. with arg_scope( [layers.conv2d, layers_lib.fully_connected], weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope( [layers.conv2d], weights_initializer=initializers.variance_scaling_initializer(), activation_fn=nn_ops.relu, normalizer_fn=layers_lib.batch_norm, normalizer_params=batch_norm_params) as sc: return sc
Example #30
Source File: inception_v1.py From keras-lambda with MIT License | 4 votes |
def inception_v1_arg_scope(weight_decay=0.00004, use_batch_norm=True, batch_norm_var_collection='moving_vars'): """Defines the default InceptionV1 arg scope. Note: Althougth the original paper didn't use batch_norm we found it useful. Args: weight_decay: The weight decay to use for regularizing the model. use_batch_norm: "If `True`, batch_norm is applied after each convolution. batch_norm_var_collection: The name of the collection for the batch norm variables. Returns: An `arg_scope` to use for the inception v3 model. """ batch_norm_params = { # Decay for the moving averages. 'decay': 0.9997, # epsilon to prevent 0s in variance. 'epsilon': 0.001, # collection containing update_ops. 'updates_collections': ops.GraphKeys.UPDATE_OPS, # collection containing the moving mean and moving variance. 'variables_collections': { 'beta': None, 'gamma': None, 'moving_mean': [batch_norm_var_collection], 'moving_variance': [batch_norm_var_collection], } } if use_batch_norm: normalizer_fn = layers_lib.batch_norm normalizer_params = batch_norm_params else: normalizer_fn = None normalizer_params = {} # Set weight_decay for weights in Conv and FC layers. with arg_scope( [layers.conv2d, layers_lib.fully_connected], weights_regularizer=regularizers.l2_regularizer(weight_decay)): with arg_scope( [layers.conv2d], weights_initializer=initializers.variance_scaling_initializer(), activation_fn=nn_ops.relu, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params) as sc: return sc