Python tensorflow.contrib.layers.python.layers.layers.layer_norm() Examples

The following are 11 code examples of tensorflow.contrib.layers.python.layers.layers.layer_norm(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.contrib.layers.python.layers.layers , or try the search function .
Example #1
Source File: rnn_cell.py    From lambda-packs with MIT License 5 votes vote down vote up
def __init__(self, num_units, forget_bias=1.0,
               input_size=None, activation=math_ops.tanh,
               layer_norm=True, norm_gain=1.0, norm_shift=0.0,
               dropout_keep_prob=1.0, dropout_prob_seed=None,
               reuse=None):
    """Initializes the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      activation: Activation function of the inner states.
      layer_norm: If `True`, layer normalization will be applied.
      norm_gain: float, The layer normalization gain initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      norm_shift: float, The layer normalization shift initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
        recurrent dropout probability value. If float and 1.0, no dropout will
        be applied.
      dropout_prob_seed: (optional) integer, the randomness seed.
      reuse: (optional) Python boolean describing whether to reuse variables
        in an existing scope.  If not `True`, and the existing scope already has
        the given variables, an error is raised.
    """
    super(LayerNormBasicLSTMCell, self).__init__(_reuse=reuse)

    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)

    self._num_units = num_units
    self._activation = activation
    self._forget_bias = forget_bias
    self._keep_prob = dropout_keep_prob
    self._seed = dropout_prob_seed
    self._layer_norm = layer_norm
    self._g = norm_gain
    self._b = norm_shift
    self._reuse = reuse 
Example #2
Source File: rnn_cell.py    From lambda-packs with MIT License 5 votes vote down vote up
def _norm(self, inp, scope):
    shape = inp.get_shape()[-1:]
    gamma_init = init_ops.constant_initializer(self._g)
    beta_init = init_ops.constant_initializer(self._b)
    with vs.variable_scope(scope):
      # Initialize beta and gamma for use by layer_norm.
      vs.get_variable("gamma", shape=shape, initializer=gamma_init)
      vs.get_variable("beta", shape=shape, initializer=beta_init)
    normalized = layers.layer_norm(inp, reuse=True, scope=scope)
    return normalized 
Example #3
Source File: rnn_cell.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def __init__(self, num_units, forget_bias=1.0,
               input_size=None, activation=math_ops.tanh,
               layer_norm=True, norm_gain=1.0, norm_shift=0.0,
               dropout_keep_prob=1.0, dropout_prob_seed=None):
    """Initializes the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      activation: Activation function of the inner states.
      layer_norm: If `True`, layer normalization will be applied.
      norm_gain: float, The layer normalization gain initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      norm_shift: float, The layer normalization shift initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
        recurrent dropout probability value. If float and 1.0, no dropout will
        be applied.
      dropout_prob_seed: (optional) integer, the randomness seed.
    """

    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)

    self._num_units = num_units
    self._activation = activation
    self._forget_bias = forget_bias
    self._keep_prob = dropout_keep_prob
    self._seed = dropout_prob_seed
    self._layer_norm = layer_norm
    self._g = norm_gain
    self._b = norm_shift 
Example #4
Source File: rnn_cell.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def _norm(self, inp, scope):
    shape = inp.get_shape()[-1:]
    gamma_init = init_ops.constant_initializer(self._g)
    beta_init = init_ops.constant_initializer(self._b)
    with vs.variable_scope(scope):
      # Initialize beta and gamma for use by layer_norm.
      vs.get_variable("gamma", shape=shape, initializer=gamma_init)
      vs.get_variable("beta", shape=shape, initializer=beta_init)
    normalized = layers.layer_norm(inp, reuse=True, scope=scope)
    return normalized 
Example #5
Source File: rnn_cell.py    From Multiview2Novelview with MIT License 5 votes vote down vote up
def _norm(g, b, inp, scope):
  shape = inp.get_shape()[-1:]
  gamma_init = init_ops.constant_initializer(g)
  beta_init = init_ops.constant_initializer(b)
  with vs.variable_scope(scope):
    # Initialize beta and gamma for use by layer_norm.
    vs.get_variable("gamma", shape=shape, initializer=gamma_init)
    vs.get_variable("beta", shape=shape, initializer=beta_init)
  normalized = layers.layer_norm(inp, reuse=True, scope=scope)
  return normalized 
Example #6
Source File: rnn_cell.py    From Multiview2Novelview with MIT License 5 votes vote down vote up
def __init__(self, num_units, forget_bias=1.0,
               input_size=None, activation=math_ops.tanh,
               layer_norm=True, norm_gain=1.0, norm_shift=0.0,
               dropout_keep_prob=1.0, dropout_prob_seed=None,
               reuse=None):
    """Initializes the basic LSTM cell.
    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      activation: Activation function of the inner states.
      layer_norm: If `True`, layer normalization will be applied.
      norm_gain: float, The layer normalization gain initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      norm_shift: float, The layer normalization shift initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
        recurrent dropout probability value. If float and 1.0, no dropout will
        be applied.
      dropout_prob_seed: (optional) integer, the randomness seed.
      reuse: (optional) Python boolean describing whether to reuse variables
        in an existing scope.  If not `True`, and the existing scope already has
        the given variables, an error is raised.
    """
    super(LayerNormBasicLSTMCell, self).__init__(_reuse=reuse)

    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)

    self._num_units = num_units
    self._activation = activation
    self._forget_bias = forget_bias
    self._keep_prob = dropout_keep_prob
    self._seed = dropout_prob_seed
    self._layer_norm = layer_norm
    self._norm_gain = norm_gain
    self._norm_shift = norm_shift
    self._reuse = reuse 
Example #7
Source File: rnn_cell.py    From Multiview2Novelview with MIT License 5 votes vote down vote up
def _norm(self, inp, scope, dtype=dtypes.float32):
    shape = inp.get_shape()[-1:]
    gamma_init = init_ops.constant_initializer(self._norm_gain)
    beta_init = init_ops.constant_initializer(self._norm_shift)
    with vs.variable_scope(scope):
      # Initialize beta and gamma for use by layer_norm.
      vs.get_variable("gamma", shape=shape, initializer=gamma_init, dtype=dtype)
      vs.get_variable("beta", shape=shape, initializer=beta_init, dtype=dtype)
    normalized = layers.layer_norm(inp, reuse=True, scope=scope)
    return normalized 
Example #8
Source File: rnn_cell.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def __init__(self, num_units, forget_bias=1.0,
               input_size=None, activation=math_ops.tanh,
               layer_norm=True, norm_gain=1.0, norm_shift=0.0,
               dropout_keep_prob=1.0, dropout_prob_seed=None):
    """Initializes the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      activation: Activation function of the inner states.
      layer_norm: If `True`, layer normalization will be applied.
      norm_gain: float, The layer normalization gain initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      norm_shift: float, The layer normalization shift initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
        recurrent dropout probability value. If float and 1.0, no dropout will
        be applied.
      dropout_prob_seed: (optional) integer, the randomness seed.
    """

    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)

    self._num_units = num_units
    self._activation = activation
    self._forget_bias = forget_bias
    self._keep_prob = dropout_keep_prob
    self._seed = dropout_prob_seed
    self._layer_norm = layer_norm
    self._g = norm_gain
    self._b = norm_shift 
Example #9
Source File: rnn_cell.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _norm(self, inp, scope):
    with vs.variable_scope(scope) as scope:
      shape = inp.get_shape()[-1:]
      gamma_init = init_ops.constant_initializer(self._g)
      beta_init = init_ops.constant_initializer(self._b)
      gamma = vs.get_variable("gamma", shape=shape, initializer=gamma_init)  # pylint: disable=unused-variable
      beta = vs.get_variable("beta", shape=shape, initializer=beta_init)  # pylint: disable=unused-variable
      normalized = layers.layer_norm(inp, reuse=True, scope=scope)
      return normalized 
Example #10
Source File: rnn_cell.py    From keras-lambda with MIT License 5 votes vote down vote up
def __init__(self, num_units, forget_bias=1.0,
               input_size=None, activation=math_ops.tanh,
               layer_norm=True, norm_gain=1.0, norm_shift=0.0,
               dropout_keep_prob=1.0, dropout_prob_seed=None):
    """Initializes the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      activation: Activation function of the inner states.
      layer_norm: If `True`, layer normalization will be applied.
      norm_gain: float, The layer normalization gain initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      norm_shift: float, The layer normalization shift initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
        recurrent dropout probability value. If float and 1.0, no dropout will
        be applied.
      dropout_prob_seed: (optional) integer, the randomness seed.
    """

    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)

    self._num_units = num_units
    self._activation = activation
    self._forget_bias = forget_bias
    self._keep_prob = dropout_keep_prob
    self._seed = dropout_prob_seed
    self._layer_norm = layer_norm
    self._g = norm_gain
    self._b = norm_shift 
Example #11
Source File: rnn_cell.py    From keras-lambda with MIT License 5 votes vote down vote up
def _norm(self, inp, scope):
    shape = inp.get_shape()[-1:]
    gamma_init = init_ops.constant_initializer(self._g)
    beta_init = init_ops.constant_initializer(self._b)
    with vs.variable_scope(scope):
      # Initialize beta and gamma for use by layer_norm.
      vs.get_variable("gamma", shape=shape, initializer=gamma_init)
      vs.get_variable("beta", shape=shape, initializer=beta_init)
    normalized = layers.layer_norm(inp, reuse=True, scope=scope)
    return normalized