Python torchvision.models.vgg.VGG Examples
The following are 21
code examples of torchvision.models.vgg.VGG().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.models.vgg
, or try the search function
.
Example #1
Source File: prune_train.py From nn-compression with MIT License | 6 votes |
def get_vgg_cfg(model): """ return config list to generate VGG instance :param model: class VGG (torch.nn.Module), model to prune :return: list, config list to generate VGG instance """ assert isinstance(model, models.VGG) features = model.features if isinstance(features, torch.nn.DataParallel): features = features.module cfg = [] batch_norm = False for m in features: if isinstance(m, torch.nn.modules.conv._ConvNd): cfg.append(m.out_channels) elif isinstance(m, torch.nn.modules.pooling._MaxPoolNd): cfg.append('M') elif isinstance(m, torch.nn.modules.batchnorm._BatchNorm): batch_norm = True return cfg, batch_norm
Example #2
Source File: fcn_2d.py From elektronn3 with MIT License | 5 votes |
def forward(self, x): output = {} # get the output of each maxpooling layer (5 maxpool in VGG net) for idx in range(len(self.ranges)): for layer in range(self.ranges[idx][0], self.ranges[idx][1]): x = self.features[layer](x) output["x%d"%(idx+1)] = x return output
Example #3
Source File: vgg.py From openpose-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def hand21(config_channels): cfg = [ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 512, 512, 128, ] return VGG(config_channels, make_layers(config_channels, cfg))
Example #4
Source File: vgg.py From openpose-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def person18_19(config_channels): cfg = [ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 256, 128, ] return VGG(config_channels, make_layers(config_channels, cfg))
Example #5
Source File: vgg.py From openpose-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg19_bn(config_channels): model = VGG(config_channels, make_layers(config_channels, cfg['E'], batch_norm=True)) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg19_bn'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #6
Source File: vgg.py From openpose-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg19(config_channels): model = VGG(config_channels, make_layers(config_channels, cfg['E'])) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg19'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #7
Source File: vgg.py From openpose-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg16(config_channels): model = VGG(config_channels, make_layers(config_channels, cfg['D'])) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg16'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #8
Source File: vgg.py From openpose-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg13_bn(config_channels): model = VGG(config_channels, make_layers(config_channels, cfg['B'], batch_norm=True)) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg13_bn'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #9
Source File: vgg.py From openpose-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg13(config_channels): model = VGG(config_channels, make_layers(config_channels, cfg['B'])) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg13'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #10
Source File: vgg.py From openpose-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg11_bn(config_channels): model = VGG(config_channels, make_layers(config_channels, cfg['A'], batch_norm=True)) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg11_bn'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #11
Source File: vgg.py From openpose-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg11(config_channels): model = VGG(config_channels, make_layers(config_channels, cfg['A'])) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg11'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #12
Source File: vgg.py From talking-heads with GNU General Public License v3.0 | 5 votes |
def vgg_face(pretrained=False, **kwargs): if pretrained: kwargs['init_weights'] = False model = vgg.VGG(vgg.make_layers(vgg.cfgs['D'], batch_norm=False), num_classes=2622, **kwargs) if pretrained: model.load_state_dict(vgg_face_state_dict()) return model
Example #13
Source File: vgg.py From yolo2-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg11(config_channels, anchors, num_cls): model = VGG(config_channels, anchors, num_cls, make_layers(config_channels, cfg['A'])) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg11'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #14
Source File: vgg.py From segmentation_models.pytorch with MIT License | 5 votes |
def make_dilated(self, stage_list, dilation_list): raise ValueError("'VGG' models do not support dilated mode due to Max Pooling" " operations for downsampling!")
Example #15
Source File: get_cnn.py From graph_distillation with Apache License 2.0 | 5 votes |
def get_vgg(in_channels=3, **kwargs): model = VGG(make_layers(cfg['D'], in_channels), **kwargs) return model
Example #16
Source File: vgg.py From yolo2-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg19_bn(config_channels, anchors, num_cls): model = VGG(config_channels, anchors, num_cls, make_layers(config_channels, cfg['E'], batch_norm=True)) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg19_bn'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #17
Source File: vgg.py From yolo2-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg19(config_channels, anchors, num_cls): model = VGG(config_channels, anchors, num_cls, make_layers(config_channels, cfg['E'])) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg19'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #18
Source File: vgg.py From yolo2-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg16(config_channels, anchors, num_cls): model = VGG(config_channels, anchors, num_cls, make_layers(config_channels, cfg['D'])) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg16'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #19
Source File: vgg.py From yolo2-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg13_bn(config_channels, anchors, num_cls): model = VGG(config_channels, anchors, num_cls, make_layers(config_channels, cfg['B'], batch_norm=True)) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg13_bn'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #20
Source File: vgg.py From yolo2-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg13(config_channels, anchors, num_cls): model = VGG(config_channels, anchors, num_cls, make_layers(config_channels, cfg['B'])) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg13'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model
Example #21
Source File: vgg.py From yolo2-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def vgg11_bn(config_channels, anchors, num_cls): model = VGG(config_channels, anchors, num_cls, make_layers(config_channels, cfg['A'], batch_norm=True)) if config_channels.config.getboolean('model', 'pretrained'): url = model_urls['vgg11_bn'] logging.info('use pretrained model: ' + url) state_dict = model.state_dict() for key, value in model_zoo.load_url(url).items(): if key in state_dict: state_dict[key] = value model.load_state_dict(state_dict) return model