Python object_detection.utils.learning_schedules.manual_stepping() Examples
The following are 30
code examples of object_detection.utils.learning_schedules.manual_stepping().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.utils.learning_schedules
, or try the search function
.
Example #1
Source File: learning_schedules_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testManualStepping(self): global_step = tf.placeholder(tf.int64, []) boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] learning_rate = learning_schedules.manual_stepping(global_step, boundaries, rates) with self.test_session() as sess: output_rates = [] for input_global_step in range(10): output_rate = sess.run(learning_rate, feed_dict={global_step: input_global_step}) output_rates.append(output_rate) self.assertAllClose(output_rates, exp_rates)
Example #2
Source File: learning_schedules_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testManualSteppingWithWarmup(self): def graph_fn(global_step): boundaries = [4, 6, 8] rates = [0.02, 0.10, 0.01, 0.001] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates, warmup=True) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(9) ] exp_rates = [0.02, 0.04, 0.06, 0.08, 0.10, 0.10, 0.01, 0.01, 0.001] self.assertAllClose(output_rates, exp_rates)
Example #3
Source File: learning_schedules_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testManualStepping(self): def graph_fn(global_step): boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(10) ] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] self.assertAllClose(output_rates, exp_rates)
Example #4
Source File: learning_schedules_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testManualStepping(self): def graph_fn(global_step): boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(10) ] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] self.assertAllClose(output_rates, exp_rates)
Example #5
Source File: learning_schedules_test.py From AniSeg with Apache License 2.0 | 5 votes |
def testManualSteppingWithZeroBoundaries(self): def graph_fn(global_step): boundaries = [] rates = [0.01] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(4) ] exp_rates = [0.01] * 4 self.assertAllClose(output_rates, exp_rates)
Example #6
Source File: learning_schedules_test.py From AniSeg with Apache License 2.0 | 5 votes |
def testManualStepping(self): def graph_fn(global_step): boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(10) ] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] self.assertAllClose(output_rates, exp_rates)
Example #7
Source File: learning_schedules_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testManualSteppingWithWarmup(self): def graph_fn(global_step): boundaries = [4, 6, 8] rates = [0.02, 0.10, 0.01, 0.001] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates, warmup=True) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(9) ] exp_rates = [0.02, 0.04, 0.06, 0.08, 0.10, 0.10, 0.01, 0.01, 0.001] self.assertAllClose(output_rates, exp_rates)
Example #8
Source File: learning_schedules_test.py From models with Apache License 2.0 | 5 votes |
def testManualStepping(self): def graph_fn(global_step): boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(10) ] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] self.assertAllClose(output_rates, exp_rates)
Example #9
Source File: learning_schedules_test.py From models with Apache License 2.0 | 5 votes |
def testManualSteppingWithWarmup(self): def graph_fn(global_step): boundaries = [4, 6, 8] rates = [0.02, 0.10, 0.01, 0.001] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates, warmup=True) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(9) ] exp_rates = [0.02, 0.04, 0.06, 0.08, 0.10, 0.10, 0.01, 0.01, 0.001] self.assertAllClose(output_rates, exp_rates)
Example #10
Source File: learning_schedules_test.py From models with Apache License 2.0 | 5 votes |
def testManualSteppingWithZeroBoundaries(self): def graph_fn(global_step): boundaries = [] rates = [0.01] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(4) ] exp_rates = [0.01] * 4 self.assertAllClose(output_rates, exp_rates)
Example #11
Source File: learning_schedules_test.py From motion-rcnn with MIT License | 5 votes |
def testManualStepping(self): global_step = tf.placeholder(tf.int64, []) boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] learning_rate = learning_schedules.manual_stepping(global_step, boundaries, rates) with self.test_session() as sess: output_rates = [] for input_global_step in range(10): output_rate = sess.run(learning_rate, feed_dict={global_step: input_global_step}) output_rates.append(output_rate) self.assertAllClose(output_rates, exp_rates)
Example #12
Source File: learning_schedules_test.py From mtl-ssl with Apache License 2.0 | 5 votes |
def testManualStepping(self): global_step = tf.placeholder(tf.int64, []) boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] learning_rate = learning_schedules.manual_stepping(global_step, boundaries, rates) with self.test_session() as sess: output_rates = [] for input_global_step in range(10): output_rate = sess.run(learning_rate, feed_dict={global_step: input_global_step}) output_rates.append(output_rate) self.assertAllClose(output_rates, exp_rates)
Example #13
Source File: learning_schedules_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def testManualStepping(self): def graph_fn(global_step): boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(10) ] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] self.assertAllClose(output_rates, exp_rates)
Example #14
Source File: learning_schedules_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def testManualSteppingWithWarmup(self): def graph_fn(global_step): boundaries = [4, 6, 8] rates = [0.02, 0.10, 0.01, 0.001] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates, warmup=True) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(9) ] exp_rates = [0.02, 0.04, 0.06, 0.08, 0.10, 0.10, 0.01, 0.01, 0.001] self.assertAllClose(output_rates, exp_rates)
Example #15
Source File: learning_schedules_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testManualSteppingWithZeroBoundaries(self): def graph_fn(global_step): boundaries = [] rates = [0.01] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(4) ] exp_rates = [0.01] * 4 self.assertAllClose(output_rates, exp_rates)
Example #16
Source File: learning_schedules_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testManualStepping(self): global_step = tf.placeholder(tf.int64, []) boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] learning_rate = learning_schedules.manual_stepping(global_step, boundaries, rates) with self.test_session() as sess: output_rates = [] for input_global_step in range(10): output_rate = sess.run(learning_rate, feed_dict={global_step: input_global_step}) output_rates.append(output_rate) self.assertAllClose(output_rates, exp_rates)
Example #17
Source File: learning_schedules_test.py From Elphas with Apache License 2.0 | 5 votes |
def testManualStepping(self): def graph_fn(global_step): boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(10) ] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] self.assertAllClose(output_rates, exp_rates)
Example #18
Source File: learning_schedules_test.py From MBMD with MIT License | 5 votes |
def testManualStepping(self): global_step = tf.placeholder(tf.int64, []) boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] learning_rate = learning_schedules.manual_stepping(global_step, boundaries, rates) with self.test_session() as sess: output_rates = [] for input_global_step in range(10): output_rate = sess.run(learning_rate, feed_dict={global_step: input_global_step}) output_rates.append(output_rate) self.assertAllClose(output_rates, exp_rates)
Example #19
Source File: learning_schedules_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def testManualStepping(self): global_step = tf.placeholder(tf.int64, []) boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] learning_rate = learning_schedules.manual_stepping(global_step, boundaries, rates) with self.test_session() as sess: output_rates = [] for input_global_step in range(10): output_rate = sess.run(learning_rate, feed_dict={global_step: input_global_step}) output_rates.append(output_rate) self.assertAllClose(output_rates, exp_rates)
Example #20
Source File: learning_schedules_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def testManualSteppingWithZeroBoundaries(self): def graph_fn(global_step): boundaries = [] rates = [0.01] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(4) ] exp_rates = [0.01] * 4 self.assertAllClose(output_rates, exp_rates)
Example #21
Source File: learning_schedules_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def testManualSteppingWithWarmup(self): def graph_fn(global_step): boundaries = [4, 6, 8] rates = [0.02, 0.10, 0.01, 0.001] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates, warmup=True) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(9) ] exp_rates = [0.02, 0.04, 0.06, 0.08, 0.10, 0.10, 0.01, 0.01, 0.001] self.assertAllClose(output_rates, exp_rates)
Example #22
Source File: learning_schedules_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def testManualStepping(self): def graph_fn(global_step): boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(10) ] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] self.assertAllClose(output_rates, exp_rates)
Example #23
Source File: learning_schedules_test.py From hands-detection with MIT License | 5 votes |
def testManualStepping(self): global_step = tf.placeholder(tf.int64, []) boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] learning_rate = learning_schedules.manual_stepping(global_step, boundaries, rates) with self.test_session() as sess: output_rates = [] for input_global_step in range(10): output_rate = sess.run(learning_rate, feed_dict={global_step: input_global_step}) output_rates.append(output_rate) self.assertAllClose(output_rates, exp_rates)
Example #24
Source File: learning_schedules_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testManualStepping(self): global_step = tf.placeholder(tf.int64, []) boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] learning_rate = learning_schedules.manual_stepping(global_step, boundaries, rates) with self.test_session() as sess: output_rates = [] for input_global_step in range(10): output_rate = sess.run(learning_rate, feed_dict={global_step: input_global_step}) output_rates.append(output_rate) self.assertAllClose(output_rates, exp_rates)
Example #25
Source File: learning_schedules_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testManualSteppingWithZeroBoundaries(self): def graph_fn(global_step): boundaries = [] rates = [0.01] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(4) ] exp_rates = [0.01] * 4 self.assertAllClose(output_rates, exp_rates)
Example #26
Source File: learning_schedules_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testManualSteppingWithWarmup(self): def graph_fn(global_step): boundaries = [4, 6, 8] rates = [0.02, 0.10, 0.01, 0.001] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates, warmup=True) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(9) ] exp_rates = [0.02, 0.04, 0.06, 0.08, 0.10, 0.10, 0.01, 0.01, 0.001] self.assertAllClose(output_rates, exp_rates)
Example #27
Source File: learning_schedules_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testManualStepping(self): def graph_fn(global_step): boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(10) ] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] self.assertAllClose(output_rates, exp_rates)
Example #28
Source File: learning_schedules_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def testManualSteppingWithZeroBoundaries(self): def graph_fn(global_step): boundaries = [] rates = [0.01] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(4) ] exp_rates = [0.01] * 4 self.assertAllClose(output_rates, exp_rates)
Example #29
Source File: learning_schedules_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def testManualSteppingWithWarmup(self): def graph_fn(global_step): boundaries = [4, 6, 8] rates = [0.02, 0.10, 0.01, 0.001] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates, warmup=True) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(9) ] exp_rates = [0.02, 0.04, 0.06, 0.08, 0.10, 0.10, 0.01, 0.01, 0.001] self.assertAllClose(output_rates, exp_rates)
Example #30
Source File: learning_schedules_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def testManualStepping(self): def graph_fn(global_step): boundaries = [2, 3, 7] rates = [1.0, 2.0, 3.0, 4.0] learning_rate = learning_schedules.manual_stepping( global_step, boundaries, rates) assert learning_rate.op.name.endswith('learning_rate') return (learning_rate,) output_rates = [ self.execute(graph_fn, [np.array(i).astype(np.int64)]) for i in range(10) ] exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0] self.assertAllClose(output_rates, exp_rates)