Python tensorflow.python.framework.graph_util.remove_training_nodes() Examples

The following are 13 code examples of tensorflow.python.framework.graph_util.remove_training_nodes(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.framework.graph_util , or try the search function .
Example #1
Source File: convert.py    From tf-encrypted with Apache License 2.0 6 votes vote down vote up
def export_cnn() -> None:
    input = tf.placeholder(tf.float32, shape=(1, 1, 3, 3))
    filter = tf.constant(np.ones((3, 3, 1, 1)), dtype=tf.float32)
    x = tf.nn.conv2d(input, filter, (1, 1, 1, 1), "SAME", data_format="NCHW")
    x = tf.nn.sigmoid(x)
    x = tf.nn.relu(x)

    pred_node_names = ["output"]
    tf.identity(x, name=pred_node_names[0])

    with tf.Session() as sess:
        constant_graph = graph_util.convert_variables_to_constants(
            sess, sess.graph.as_graph_def(), pred_node_names
        )

    frozen = graph_util.remove_training_nodes(constant_graph)

    output = "cnn.pb"
    graph_io.write_graph(frozen, ".", output, as_text=False) 
Example #2
Source File: convert_test.py    From tf-encrypted with Apache License 2.0 6 votes vote down vote up
def export(x: tf.Tensor, filename: str, sess=None):
    should_close = False
    if sess is None:
        should_close = True
        sess = tf.Session()

    pred_node_names = ["output"]
    tf.identity(x, name=pred_node_names[0])
    graph = graph_util.convert_variables_to_constants(
        sess, sess.graph.as_graph_def(), pred_node_names
    )

    graph = graph_util.remove_training_nodes(graph)

    path = graph_io.write_graph(graph, ".", filename, as_text=False)

    if should_close:
        sess.close()

    return path 
Example #3
Source File: tensorflow_parser.py    From incubator-tvm with Apache License 2.0 6 votes vote down vote up
def _load_saved_model(self):
        """Load the tensorflow saved model."""
        try:
            from tensorflow.python.tools import freeze_graph
            from tensorflow.python.framework import ops
            from tensorflow.python.framework import graph_util
            from tensorflow.core.framework import graph_pb2
        except ImportError:
            raise ImportError(
                "InputConfiguration: Unable to import tensorflow which is "
                "required to restore from saved model.")

        saved_model_dir = self._model_dir
        output_graph_filename = self._tmp_dir.relpath("tf_frozen_model.pb")
        input_saved_model_dir = saved_model_dir
        output_node_names = self._get_output_names()

        input_binary = False
        input_saver_def_path = False
        restore_op_name = None
        filename_tensor_name = None
        clear_devices = True
        input_meta_graph = False
        checkpoint_path = None
        input_graph_filename = None
        saved_model_tags = ",".join(self._get_tag_set())

        freeze_graph.freeze_graph(input_graph_filename, input_saver_def_path,
                                  input_binary, checkpoint_path, output_node_names,
                                  restore_op_name, filename_tensor_name,
                                  output_graph_filename, clear_devices, "", "", "",
                                  input_meta_graph, input_saved_model_dir,
                                  saved_model_tags)

        with ops.Graph().as_default():
            output_graph_def = graph_pb2.GraphDef()
            with open(output_graph_filename, "rb") as f:
                output_graph_def.ParseFromString(f.read())
            output_graph_def = graph_util.remove_training_nodes(output_graph_def,
                                                                protected_nodes=self._outputs)
            return output_graph_def 
Example #4
Source File: optimize_for_inference_lib.py    From lambda-packs with MIT License 5 votes vote down vote up
def optimize_for_inference(input_graph_def, input_node_names, output_node_names,
                           placeholder_type_enum):
  """Applies a series of inference optimizations on the input graph.

  Args:
    input_graph_def: A GraphDef containing a training model.
    input_node_names: A list of names of the nodes that are fed inputs during
      inference.
    output_node_names: A list of names of the nodes that produce the final
      results.
    placeholder_type_enum: The AttrValue enum for the placeholder data type, or
        a list that specifies one value per input node name.

  Returns:
    An optimized version of the input graph.
  """
  ensure_graph_is_valid(input_graph_def)
  optimized_graph_def = input_graph_def
  optimized_graph_def = strip_unused_lib.strip_unused(optimized_graph_def,
                                                      input_node_names,
                                                      output_node_names,
                                                      placeholder_type_enum)
  optimized_graph_def = graph_util.remove_training_nodes(optimized_graph_def)
  optimized_graph_def = fold_batch_norms(optimized_graph_def)
  optimized_graph_def = fuse_resize_and_conv(optimized_graph_def,
                                             output_node_names)
  ensure_graph_is_valid(optimized_graph_def)
  return optimized_graph_def 
Example #5
Source File: optimize_for_inference_lib.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def optimize_for_inference(input_graph_def, input_node_names, output_node_names,
                           placeholder_type_enum):
  """Applies a series of inference optimizations on the input graph.

  Args:
    input_graph_def: A GraphDef containing a training model.
    input_node_names: A list of names of the nodes that are fed inputs during
      inference.
    output_node_names: A list of names of the nodes that produce the final
      results.
    placeholder_type_enum: The AttrValue enum for the placeholder data type, or
        a list that specifies one value per input node name.

  Returns:
    An optimized version of the input graph.
  """
  ensure_graph_is_valid(input_graph_def)
  optimized_graph_def = input_graph_def
  optimized_graph_def = strip_unused_lib.strip_unused(optimized_graph_def,
                                                      input_node_names,
                                                      output_node_names,
                                                      placeholder_type_enum)
  optimized_graph_def = graph_util.remove_training_nodes(optimized_graph_def)
  optimized_graph_def = fold_batch_norms(optimized_graph_def)
  optimized_graph_def = fuse_resize_and_conv(optimized_graph_def,
                                             output_node_names)
  ensure_graph_is_valid(optimized_graph_def)
  return optimized_graph_def 
Example #6
Source File: optimize_for_inference_lib.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def optimize_for_inference(input_graph_def, input_node_names,
                           output_node_names, placeholder_type_enum):
  """Applies a series of inference optimizations on the input graph.

  Args:
    input_graph_def: A GraphDef containing a training model.
    input_node_names: A list of names of the nodes that are fed inputs during
      inference.
    output_node_names: A list of names of the nodes that produce the final
      results.
    placeholder_type_enum: Data type of the placeholders used for inputs.

  Returns:
    An optimized version of the input graph.
  """
  ensure_graph_is_valid(input_graph_def)
  optimized_graph_def = input_graph_def
  optimized_graph_def = strip_unused_lib.strip_unused(optimized_graph_def,
                                                      input_node_names,
                                                      output_node_names,
                                                      placeholder_type_enum)
  optimized_graph_def = graph_util.remove_training_nodes(optimized_graph_def)
  optimized_graph_def = fold_batch_norms(optimized_graph_def)
  optimized_graph_def = fuse_resize_and_conv(optimized_graph_def,
                                             output_node_names)
  ensure_graph_is_valid(optimized_graph_def)
  return optimized_graph_def 
Example #7
Source File: main.py    From tf-encrypted with Apache License 2.0 5 votes vote down vote up
def export_to_pb(sess, x, filename):
    pred_names = ["output"]
    tf.identity(x, name=pred_names[0])

    graph = graph_util.convert_variables_to_constants(
        sess, sess.graph.as_graph_def(), pred_names
    )

    graph = graph_util.remove_training_nodes(graph)
    path = graph_io.write_graph(graph, ".", filename, as_text=False)
    print("saved the frozen graph (ready for inference) at: ", path) 
Example #8
Source File: mnist_deep_cnn.py    From tf-encrypted with Apache License 2.0 5 votes vote down vote up
def export_to_pb(sess, x, filename):
    pred_names = ["output"]
    tf.identity(x, name=pred_names[0])

    graph = graph_util.convert_variables_to_constants(
        sess, sess.graph.as_graph_def(), pred_names
    )

    graph = graph_util.remove_training_nodes(graph)
    path = graph_io.write_graph(graph, ".", filename, as_text=False)
    print("saved the frozen graph (ready for inference) at: ", filename)

    return path 
Example #9
Source File: optimize_for_inference_lib.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 5 votes vote down vote up
def optimize_for_inference(input_graph_def, input_node_names, output_node_names,
                           placeholder_type_enum):
  """Applies a series of inference optimizations on the input graph.

  Args:
    input_graph_def: A GraphDef containing a training model.
    input_node_names: A list of names of the nodes that are fed inputs during
      inference.
    output_node_names: A list of names of the nodes that produce the final
      results.
    placeholder_type_enum: The AttrValue enum for the placeholder data type, or
        a list that specifies one value per input node name.

  Returns:
    An optimized version of the input graph.
  """
  ensure_graph_is_valid(input_graph_def)
  optimized_graph_def = input_graph_def
  optimized_graph_def = strip_unused_lib.strip_unused(
      optimized_graph_def, input_node_names, output_node_names,
      placeholder_type_enum)
  optimized_graph_def = graph_util.remove_training_nodes(
      optimized_graph_def, output_node_names)
  optimized_graph_def = fold_batch_norms(optimized_graph_def)
  optimized_graph_def = fuse_resize_and_conv(optimized_graph_def,
                                             output_node_names)
  ensure_graph_is_valid(optimized_graph_def)
  return optimized_graph_def 
Example #10
Source File: optimize_for_inference_lib.py    From keras-lambda with MIT License 5 votes vote down vote up
def optimize_for_inference(input_graph_def, input_node_names, output_node_names,
                           placeholder_type_enum):
  """Applies a series of inference optimizations on the input graph.

  Args:
    input_graph_def: A GraphDef containing a training model.
    input_node_names: A list of names of the nodes that are fed inputs during
      inference.
    output_node_names: A list of names of the nodes that produce the final
      results.
    placeholder_type_enum: The AttrValue enum for the placeholder data type, or
        a list that specifies one value per input node name.

  Returns:
    An optimized version of the input graph.
  """
  ensure_graph_is_valid(input_graph_def)
  optimized_graph_def = input_graph_def
  optimized_graph_def = strip_unused_lib.strip_unused(optimized_graph_def,
                                                      input_node_names,
                                                      output_node_names,
                                                      placeholder_type_enum)
  optimized_graph_def = graph_util.remove_training_nodes(optimized_graph_def)
  optimized_graph_def = fold_batch_norms(optimized_graph_def)
  optimized_graph_def = fuse_resize_and_conv(optimized_graph_def,
                                             output_node_names)
  ensure_graph_is_valid(optimized_graph_def)
  return optimized_graph_def 
Example #11
Source File: tensorflow_translator.py    From eran with Apache License 2.0 4 votes vote down vote up
def __init__(self, model, session = None):
		"""
		This constructor takes a reference to a TensorFlow Operation or Tensor or Keras model and then applies the two TensorFlow functions
		graph_util.convert_variables_to_constants and graph_util.remove_training_nodes to cleanse the graph of any nodes that are linked to training. This leaves us with 
		the nodes you need for inference. 
		In the resulting graph there should only be tf.Operations left that have one of the following types [Const, MatMul, Add, BiasAdd, Conv2D, Reshape, MaxPool, AveragePool, Placeholder, Relu, Sigmoid, Tanh]
		If the input should be a Keras model we will ignore operations with type Pack, Shape, StridedSlice, and Prod such that the Flatten layer can be used.
		
		Arguments
		---------
		model : tensorflow.Tensor or tensorflow.Operation or tensorflow.python.keras.engine.sequential.Sequential or keras.engine.sequential.Sequential
		    if tensorflow.Tensor: model.op will be treated as the output node of the TensorFlow model. Make sure that the graph only contains supported operations after applying
		                          graph_util.convert_variables_to_constants and graph_util.remove_training_nodes with [model.op.name] as output_node_names
		    if tensorflow.Operation: model will be treated as the output of the TensorFlow model. Make sure that the graph only contains supported operations after applying
		                          graph_util.convert_variables_to_constants and graph_util.remove_training_nodes with [model.op.name] as output_node_names
		    if tensorflow.python.keras.engine.sequential.Sequential: x = model.layers[-1].output.op.inputs[0].op will be treated as the output node of the Keras model. Make sure that the graph only
		                          contains supported operations after applying graph_util.convert_variables_to_constants and graph_util.remove_training_nodes with [x.name] as
		                          output_node_names
		    if keras.engine.sequential.Sequential: x = model.layers[-1].output.op.inputs[0].op will be treated as the output node of the Keras model. Make sure that the graph only
		                          contains supported operations after applying graph_util.convert_variables_to_constants and graph_util.remove_training_nodes with [x.name] as
		                          output_node_names
		session : tf.Session
		    session which contains the information about the trained variables. If None the code will take the Session from tf.get_default_session(). If you pass a keras model you don't have to
		    provide a session, this function will automatically get it.
		"""	
		output_names = None
		if issubclass(model.__class__, tf.Tensor):
			output_names = [model.op.name]
		elif issubclass(model.__class__, tf.Operation):
			output_names = [model.name]
		elif issubclass(model.__class__, Sequential):
			session      = tf.keras.backend.get_session()
			output_names = [model.layers[-1].output.op.inputs[0].op.name]
			model        = model.layers[-1].output.op
		elif issubclass(model.__class__, onnx.ModelProto):
			assert 0, 'not tensorflow model'
		else:
			import keras
			if issubclass(model.__class__, keras.engine.sequential.Sequential):
				session      = keras.backend.get_session()
				output_names = [model.layers[-1].output.op.inputs[0].op.name]
				model        = model.layers[-1].output.op
			else:
				assert 0, "ERAN can't recognize this input"
		
		if session is None:
			session = tf.get_default_session()
		
		tmp = graph_util.convert_variables_to_constants(session, model.graph.as_graph_def(), output_names)
		self.graph_def = graph_util.remove_training_nodes(tmp) 
Example #12
Source File: graph_util_test.py    From deep_image_model with Apache License 2.0 4 votes vote down vote up
def testRemoveTrainingNodes(self):
    a_constant_name = "a_constant"
    b_constant_name = "b_constant"
    a_check_name = "a_check"
    b_check_name = "b_check"
    a_identity_name = "a_identity"
    b_identity_name = "b_identity"
    add_name = "add"
    graph_def = tf.GraphDef()
    a_constant = self.create_constant_node_def(a_constant_name,
                                               value=1,
                                               dtype=tf.float32,
                                               shape=[])
    graph_def.node.extend([a_constant])
    a_check_node = self.create_node_def("CheckNumerics", a_check_name,
                                        [a_constant_name])
    graph_def.node.extend([a_check_node])
    a_identity_node = self.create_node_def("Identity", a_identity_name,
                                           [a_constant_name,
                                            "^" + a_check_name])
    graph_def.node.extend([a_identity_node])
    b_constant = self.create_constant_node_def(b_constant_name,
                                               value=1,
                                               dtype=tf.float32,
                                               shape=[])
    graph_def.node.extend([b_constant])
    b_check_node = self.create_node_def("CheckNumerics", b_check_name,
                                        [b_constant_name])
    graph_def.node.extend([b_check_node])
    b_identity_node = self.create_node_def("Identity", b_identity_name,
                                           [b_constant_name,
                                            "^" + b_check_name])
    graph_def.node.extend([b_identity_node])
    add_node = self.create_node_def("Add", add_name,
                                    [a_identity_name,
                                     b_identity_name])
    self.set_attr_dtype(add_node, "T", tf.float32)
    graph_def.node.extend([add_node])

    expected_output = tf.GraphDef()
    a_constant = self.create_constant_node_def(a_constant_name,
                                               value=1,
                                               dtype=tf.float32,
                                               shape=[])
    expected_output.node.extend([a_constant])
    b_constant = self.create_constant_node_def(b_constant_name,
                                               value=1,
                                               dtype=tf.float32,
                                               shape=[])
    expected_output.node.extend([b_constant])
    add_node = self.create_node_def("Add", add_name,
                                    [a_constant_name,
                                     b_constant_name])
    self.set_attr_dtype(add_node, "T", tf.float32)
    expected_output.node.extend([add_node])

    output = graph_util.remove_training_nodes(graph_def)
    self.assertProtoEquals(expected_output, output) 
Example #13
Source File: quantize_graph.py    From deep_image_model with Apache License 2.0 4 votes vote down vote up
def rewrite(self, output_node_names):
    """Triggers rewriting of the float graph.

    Args:
      output_node_names: A list of names of the nodes that produce the final
        results.

    Returns:
      A quantized version of the float graph.
    """
    self.output_graph = tf.GraphDef()
    output_nodes = [self.nodes_map[output_node_name]
                    for output_node_name in output_node_names]
    if self.mode == "round":
      self.already_visited = {}
      for output_node in output_nodes:
        self.round_nodes_recursively(output_node)
    elif self.mode == "quantize":
      self.already_visited = {}
      self.already_quantized = {}
      for output_node in output_nodes:
        self.quantize_nodes_recursively(output_node)
    elif self.mode == "eightbit":
      self.set_input_graph(graph_util.remove_training_nodes(self.input_graph))
      output_nodes = [self.nodes_map[output_node_name]
                      for output_node_name in output_node_names]

      self.state = EightbitizeRecursionState(already_visited={},
                                             output_node_stack=[],
                                             merged_with_fake_quant={})
      for output_node in output_nodes:
        self.eightbitize_nodes_recursively(output_node)
      self.state = None
      if self.input_range:
        self.add_output_graph_node(create_constant_node(
            "quantized_input_min_value", self.input_range[0], tf.float32, []))
        self.add_output_graph_node(create_constant_node(
            "quantized_input_max_value", self.input_range[1], tf.float32, []))
      if self.fallback_quantization_range:
        self.add_output_graph_node(create_constant_node(
            "fallback_quantization_min_value",
            self.fallback_quantization_range[0], tf.float32, []))
        self.add_output_graph_node(create_constant_node(
            "fallback_quantization_max_value",
            self.fallback_quantization_range[1], tf.float32, []))
      if FLAGS.strip_redundant_quantization:
        self.output_graph = self.remove_redundant_quantization(
            self.output_graph)
        self.remove_dead_nodes(output_node_names)
      self.apply_final_node_renames()
    elif self.mode == "weights":
      self.output_graph = self.quantize_weights(self.input_graph,
                                                b"MIN_COMBINED")
      self.remove_dead_nodes(output_node_names)
    elif self.mode == "weights_rounded":
      self.output_graph = self.quantize_weights(self.input_graph, self.mode)
      self.remove_dead_nodes(output_node_names)
    else:
      print("Bad mode - " + self.mode + ".")
    return self.output_graph