Python sklearn.datasets.make_spd_matrix() Examples
The following are 5
code examples of sklearn.datasets.make_spd_matrix().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.datasets
, or try the search function
.
Example #1
Source File: portfolio.py From qiskit-aqua with Apache License 2.0 | 6 votes |
def random_model(n, seed=None): """Generate random model (mu, sigma) for portfolio optimization problem. Args: n (int): number of assets. seed (int or None): random seed - if None, will not initialize. Returns: numpy.narray: expected return vector numpy.ndarray: covariance matrix """ if seed: aqua_globals.random_seed = seed # draw random return values between [0, 1] m_u = aqua_globals.random.uniform(size=n, low=0, high=1) # construct positive semi-definite covariance matrix sigma = make_spd_matrix(n) return m_u, sigma
Example #2
Source File: __init__.py From hmmlearn with BSD 3-Clause "New" or "Revised" License | 6 votes |
def make_covar_matrix(covariance_type, n_components, n_features, random_state=None): mincv = 0.1 prng = check_random_state(random_state) if covariance_type == 'spherical': return (mincv + mincv * prng.random_sample((n_components,))) ** 2 elif covariance_type == 'tied': return (make_spd_matrix(n_features) + mincv * np.eye(n_features)) elif covariance_type == 'diag': return (mincv + mincv * prng.random_sample((n_components, n_features))) ** 2 elif covariance_type == 'full': return np.array([ (make_spd_matrix(n_features, random_state=prng) + mincv * np.eye(n_features)) for x in range(n_components) ])
Example #3
Source File: test_samples_generator.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert_equal(X.shape, (5, 5), "X shape mismatch") assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_array_equal(eigenvalues > 0, np.array([True] * 5), "X is not positive-definite")
Example #4
Source File: test_work.py From pyDML with GNU General Public License v3.0 | 5 votes |
def test_Metric(self): np.random.seed(28) for d in [iris, wine, breast_cancer]: X, y = d() n, d = X.shape M = make_spd_matrix(d) metric = Metric(M) metric.fit(X, y) L = metric.transformer() assert_array_almost_equal(L.T.dot(L), M) LX1 = metric.transform() LX2 = metric.transform(X) dl1 = pdist(LX1) dl2 = pdist(LX2) dm = pdist(X, metric='mahalanobis', VI=M) # CHecking that d_M = d_L assert_array_almost_equal(dm, dl1) assert_array_almost_equal(dm, dl2) d_, d = L.shape e_, e = M.shape assert_equal(d, e_) assert_equal(d, e) assert_equal(d, X.shape[1])
Example #5
Source File: test_samples_generator.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert_equal(X.shape, (5, 5), "X shape mismatch") assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_array_equal(eigenvalues > 0, np.array([True] * 5), "X is not positive-definite")