Python sklearn.datasets.make_friedman1() Examples
The following are 13
code examples of sklearn.datasets.make_friedman1().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.datasets
, or try the search function
.
Example #1
Source File: test_rfe.py From Mastering-Elasticsearch-7.0 with MIT License | 7 votes |
def test_rfe_min_step(): n_features = 10 X, y = make_friedman1(n_samples=50, n_features=n_features, random_state=0) n_samples, n_features = X.shape estimator = SVR(kernel="linear") # Test when floor(step * n_features) <= 0 selector = RFE(estimator, step=0.01) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is between (0,1) and floor(step * n_features) > 0 selector = RFE(estimator, step=0.20) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is an integer selector = RFE(estimator, step=5) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2)
Example #2
Source File: test_gradient_boosting.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_staged_predict(): # Test whether staged decision function eventually gives # the same prediction. X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test = X[200:] clf = GradientBoostingRegressor() # test raise ValueError if not fitted assert_raises(ValueError, lambda X: np.fromiter( clf.staged_predict(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # test if prediction for last stage equals ``predict`` for y in clf.staged_predict(X_test): assert_equal(y.shape, y_pred.shape) assert_array_almost_equal(y_pred, y)
Example #3
Source File: friedman.py From Hands-On-Genetic-Algorithms-with-Python with MIT License | 6 votes |
def __init__(self, numFeatures, numSamples, randomSeed): """ :param numFeatures: total number of features to be used (at least 5) :param numSamples: number of samples in dataset :param randomSeed: random seed value used for reproducible results """ self.numFeatures = numFeatures self.numSamples = numSamples self.randomSeed = randomSeed # generate test data: self.X, self.y = datasets.make_friedman1(n_samples=self.numSamples, n_features=self.numFeatures, noise=self.NOISE, random_state=self.randomSeed) # divide the data to a training set and a validation set: self.X_train, self.X_validation, self.y_train, self.y_validation = \ model_selection.train_test_split(self.X, self.y, test_size=self.VALIDATION_SIZE, random_state=self.randomSeed) self.regressor = GradientBoostingRegressor(random_state=self.randomSeed)
Example #4
Source File: test.py From stacked_generalization with Apache License 2.0 | 6 votes |
def test_stacked_regressor(self): bclf = LinearRegression() clfs = [RandomForestRegressor(n_estimators=50, random_state=1), GradientBoostingRegressor(n_estimators=25, random_state=1), Ridge(random_state=1)] # Friedman1 X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] sr = StackedRegressor(bclf, clfs, n_folds=3, verbose=0, oob_score_flag=True) sr.fit(X_train, y_train) mse = mean_squared_error(y_test, sr.predict(X_test)) assert_less(mse, 6.0)
Example #5
Source File: test.py From stacked_generalization with Apache License 2.0 | 6 votes |
def test_fwls_regressor(self): feature_func = lambda x: np.ones(x.shape) bclf = LinearRegression() clfs = [RandomForestRegressor(n_estimators=50, random_state=1), GradientBoostingRegressor(n_estimators=25, random_state=1), Ridge(random_state=1)] # Friedman1 X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] sr = FWLSRegressor(bclf, clfs, feature_func, n_folds=3, verbose=0, oob_score_flag=True) sr.fit(X_train, y_train) mse = mean_squared_error(y_test, sr.predict(X_test)) assert_less(mse, 6.0)
Example #6
Source File: test.py From stacked_generalization with Apache License 2.0 | 6 votes |
def test_regressor(self): X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] index = [i for i in range(200)] rf = RandomForestRegressor() jrf = JoblibedRegressor(rf, "rfr", cache_dir='') jrf.fit(X_train, y_train, index) prediction = jrf.predict(X_train, index) mse = mean_squared_error(y_train, prediction) assert_less(mse, 6.0) rf = RandomForestRegressor(n_estimators=20) jrf = JoblibedRegressor(rf, "rfr", cache_dir='') jrf.fit(X_train, y_train, index) prediction2 = jrf.predict(X_train, index) assert_allclose(prediction, prediction2)
Example #7
Source File: test_gradient_boosting.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_staged_predict(): # Test whether staged decision function eventually gives # the same prediction. X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test = X[200:] clf = GradientBoostingRegressor() # test raise ValueError if not fitted assert_raises(ValueError, lambda X: np.fromiter( clf.staged_predict(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # test if prediction for last stage equals ``predict`` for y in clf.staged_predict(X_test): assert_equal(y.shape, y_pred.shape) assert_array_equal(y_pred, y)
Example #8
Source File: test_rfe.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_rfe_min_step(): n_features = 10 X, y = make_friedman1(n_samples=50, n_features=n_features, random_state=0) n_samples, n_features = X.shape estimator = SVR(kernel="linear") # Test when floor(step * n_features) <= 0 selector = RFE(estimator, step=0.01) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is between (0,1) and floor(step * n_features) > 0 selector = RFE(estimator, step=0.20) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is an integer selector = RFE(estimator, step=5) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2)
Example #9
Source File: memory_cpu_profile.py From mlens with MIT License | 5 votes |
def run(): """Run profiling.""" lc = LayerGenerator().get_sequential('stack', False, False) cm = CMLog(verbose=False) cm.monitor() sleep(5) t1 = int(np.floor(perf_counter() - cm._t0) * 10) sleep(0.1) x, z = make_friedman1(int(5 * 1e6)) sleep(5) t2 = int(np.floor(perf_counter() - cm._t0) * 10) sleep(0.1) lc.fit(x, z) t3 = int(np.floor(perf_counter() - cm._t0) * 10) sleep(5) while not hasattr(cm, 'cpu'): cm.collect() sleep(1) return cm, t1, t2, t3
Example #10
Source File: test_samples_generator.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4])
Example #11
Source File: test_samples_generator.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4])
Example #12
Source File: test_gradient_boosting.py From Mastering-Elasticsearch-7.0 with MIT License | 4 votes |
def test_regression_synthetic(): # Test on synthetic regression datasets used in Leo Breiman, # `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996). random_state = check_random_state(1) regression_params = {'n_estimators': 100, 'max_depth': 4, 'min_samples_split': 2, 'learning_rate': 0.1, 'loss': 'ls'} # Friedman1 X, y = datasets.make_friedman1(n_samples=1200, random_state=random_state, noise=1.0) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: clf = GradientBoostingRegressor(presort=presort) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 5.0) # Friedman2 X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: regression_params['presort'] = presort clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 1700.0) # Friedman3 X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: regression_params['presort'] = presort clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 0.015)
Example #13
Source File: test_gradient_boosting.py From twitter-stock-recommendation with MIT License | 4 votes |
def test_regression_synthetic(): # Test on synthetic regression datasets used in Leo Breiman, # `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996). random_state = check_random_state(1) regression_params = {'n_estimators': 100, 'max_depth': 4, 'min_samples_split': 2, 'learning_rate': 0.1, 'loss': 'ls'} # Friedman1 X, y = datasets.make_friedman1(n_samples=1200, random_state=random_state, noise=1.0) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: clf = GradientBoostingRegressor(presort=presort) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 5.0) # Friedman2 X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: regression_params['presort'] = presort clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 1700.0) # Friedman3 X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: regression_params['presort'] = presort clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 0.015)