Python sklearn.datasets.make_friedman1() Examples

The following are 13 code examples of sklearn.datasets.make_friedman1(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module sklearn.datasets , or try the search function .
Example #1
Source File: test_rfe.py    From Mastering-Elasticsearch-7.0 with MIT License 7 votes vote down vote up
def test_rfe_min_step():
    n_features = 10
    X, y = make_friedman1(n_samples=50, n_features=n_features, random_state=0)
    n_samples, n_features = X.shape
    estimator = SVR(kernel="linear")

    # Test when floor(step * n_features) <= 0
    selector = RFE(estimator, step=0.01)
    sel = selector.fit(X, y)
    assert_equal(sel.support_.sum(), n_features // 2)

    # Test when step is between (0,1) and floor(step * n_features) > 0
    selector = RFE(estimator, step=0.20)
    sel = selector.fit(X, y)
    assert_equal(sel.support_.sum(), n_features // 2)

    # Test when step is an integer
    selector = RFE(estimator, step=5)
    sel = selector.fit(X, y)
    assert_equal(sel.support_.sum(), n_features // 2) 
Example #2
Source File: test_gradient_boosting.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_staged_predict():
    # Test whether staged decision function eventually gives
    # the same prediction.
    X, y = datasets.make_friedman1(n_samples=1200,
                                   random_state=1, noise=1.0)
    X_train, y_train = X[:200], y[:200]
    X_test = X[200:]
    clf = GradientBoostingRegressor()
    # test raise ValueError if not fitted
    assert_raises(ValueError, lambda X: np.fromiter(
        clf.staged_predict(X), dtype=np.float64), X_test)

    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    # test if prediction for last stage equals ``predict``
    for y in clf.staged_predict(X_test):
        assert_equal(y.shape, y_pred.shape)

    assert_array_almost_equal(y_pred, y) 
Example #3
Source File: friedman.py    From Hands-On-Genetic-Algorithms-with-Python with MIT License 6 votes vote down vote up
def __init__(self, numFeatures, numSamples, randomSeed):
        """
        :param numFeatures: total number of features to be used (at least 5)
        :param numSamples: number of samples in dataset
        :param randomSeed: random seed value used for reproducible results
        """

        self.numFeatures = numFeatures
        self.numSamples = numSamples
        self.randomSeed = randomSeed

        # generate test data:
        self.X, self.y = datasets.make_friedman1(n_samples=self.numSamples, n_features=self.numFeatures,
                                                 noise=self.NOISE, random_state=self.randomSeed)

        # divide the data to a training set and a validation set:
        self.X_train, self.X_validation, self.y_train, self.y_validation = \
            model_selection.train_test_split(self.X, self.y, test_size=self.VALIDATION_SIZE, random_state=self.randomSeed)

        self.regressor = GradientBoostingRegressor(random_state=self.randomSeed) 
Example #4
Source File: test.py    From stacked_generalization with Apache License 2.0 6 votes vote down vote up
def test_stacked_regressor(self):
        bclf = LinearRegression()
        clfs = [RandomForestRegressor(n_estimators=50, random_state=1),
                GradientBoostingRegressor(n_estimators=25, random_state=1),
                Ridge(random_state=1)]

        # Friedman1
        X, y = datasets.make_friedman1(n_samples=1200,
                                       random_state=1,
                                       noise=1.0)
        X_train, y_train = X[:200], y[:200]
        X_test, y_test = X[200:], y[200:]

        sr = StackedRegressor(bclf,
                              clfs,
                              n_folds=3,
                              verbose=0,
                              oob_score_flag=True)
        sr.fit(X_train, y_train)
        mse = mean_squared_error(y_test, sr.predict(X_test))
        assert_less(mse, 6.0) 
Example #5
Source File: test.py    From stacked_generalization with Apache License 2.0 6 votes vote down vote up
def test_fwls_regressor(self):
        feature_func = lambda x: np.ones(x.shape)
        bclf = LinearRegression()
        clfs = [RandomForestRegressor(n_estimators=50, random_state=1),
                GradientBoostingRegressor(n_estimators=25, random_state=1),
                Ridge(random_state=1)]

        # Friedman1
        X, y = datasets.make_friedman1(n_samples=1200,
                                       random_state=1,
                                       noise=1.0)
        X_train, y_train = X[:200], y[:200]
        X_test, y_test = X[200:], y[200:]

        sr = FWLSRegressor(bclf,
                              clfs,
                              feature_func,
                              n_folds=3,
                              verbose=0,
                              oob_score_flag=True)
        sr.fit(X_train, y_train)
        mse = mean_squared_error(y_test, sr.predict(X_test))
        assert_less(mse, 6.0) 
Example #6
Source File: test.py    From stacked_generalization with Apache License 2.0 6 votes vote down vote up
def test_regressor(self):
        X, y = datasets.make_friedman1(n_samples=1200,
                                       random_state=1,
                                       noise=1.0)
        X_train, y_train = X[:200], y[:200]
        index = [i for i in range(200)]

        rf = RandomForestRegressor()
        jrf = JoblibedRegressor(rf, "rfr", cache_dir='')
        jrf.fit(X_train, y_train, index)
        prediction = jrf.predict(X_train, index)
        mse = mean_squared_error(y_train, prediction)
        assert_less(mse, 6.0)

        rf = RandomForestRegressor(n_estimators=20)
        jrf = JoblibedRegressor(rf, "rfr", cache_dir='')
        jrf.fit(X_train, y_train, index)
        prediction2 = jrf.predict(X_train, index)
        assert_allclose(prediction, prediction2) 
Example #7
Source File: test_gradient_boosting.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_staged_predict():
    # Test whether staged decision function eventually gives
    # the same prediction.
    X, y = datasets.make_friedman1(n_samples=1200,
                                   random_state=1, noise=1.0)
    X_train, y_train = X[:200], y[:200]
    X_test = X[200:]
    clf = GradientBoostingRegressor()
    # test raise ValueError if not fitted
    assert_raises(ValueError, lambda X: np.fromiter(
        clf.staged_predict(X), dtype=np.float64), X_test)

    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    # test if prediction for last stage equals ``predict``
    for y in clf.staged_predict(X_test):
        assert_equal(y.shape, y_pred.shape)

    assert_array_equal(y_pred, y) 
Example #8
Source File: test_rfe.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def test_rfe_min_step():
    n_features = 10
    X, y = make_friedman1(n_samples=50, n_features=n_features, random_state=0)
    n_samples, n_features = X.shape
    estimator = SVR(kernel="linear")

    # Test when floor(step * n_features) <= 0
    selector = RFE(estimator, step=0.01)
    sel = selector.fit(X, y)
    assert_equal(sel.support_.sum(), n_features // 2)

    # Test when step is between (0,1) and floor(step * n_features) > 0
    selector = RFE(estimator, step=0.20)
    sel = selector.fit(X, y)
    assert_equal(sel.support_.sum(), n_features // 2)

    # Test when step is an integer
    selector = RFE(estimator, step=5)
    sel = selector.fit(X, y)
    assert_equal(sel.support_.sum(), n_features // 2) 
Example #9
Source File: memory_cpu_profile.py    From mlens with MIT License 5 votes vote down vote up
def run():
    """Run profiling."""
    lc = LayerGenerator().get_sequential('stack', False, False)

    cm = CMLog(verbose=False)
    cm.monitor()

    sleep(5)

    t1 = int(np.floor(perf_counter() - cm._t0) * 10)
    sleep(0.1)
    x, z = make_friedman1(int(5 * 1e6))

    sleep(5)

    t2 = int(np.floor(perf_counter() - cm._t0) * 10)
    sleep(0.1)
    lc.fit(x, z)
    t3 = int(np.floor(perf_counter() - cm._t0) * 10)

    sleep(5)

    while not hasattr(cm, 'cpu'):
        cm.collect()
        sleep(1)

    return cm, t1, t2, t3 
Example #10
Source File: test_samples_generator.py    From Mastering-Elasticsearch-7.0 with MIT License 5 votes vote down vote up
def test_make_friedman1():
    X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0,
                          random_state=0)

    assert_equal(X.shape, (5, 10), "X shape mismatch")
    assert_equal(y.shape, (5,), "y shape mismatch")

    assert_array_almost_equal(y,
                              10 * np.sin(np.pi * X[:, 0] * X[:, 1])
                              + 20 * (X[:, 2] - 0.5) ** 2
                              + 10 * X[:, 3] + 5 * X[:, 4]) 
Example #11
Source File: test_samples_generator.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_make_friedman1():
    X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0,
                          random_state=0)

    assert_equal(X.shape, (5, 10), "X shape mismatch")
    assert_equal(y.shape, (5,), "y shape mismatch")

    assert_array_almost_equal(y,
                              10 * np.sin(np.pi * X[:, 0] * X[:, 1])
                              + 20 * (X[:, 2] - 0.5) ** 2
                              + 10 * X[:, 3] + 5 * X[:, 4]) 
Example #12
Source File: test_gradient_boosting.py    From Mastering-Elasticsearch-7.0 with MIT License 4 votes vote down vote up
def test_regression_synthetic():
    # Test on synthetic regression datasets used in Leo Breiman,
    # `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996).
    random_state = check_random_state(1)
    regression_params = {'n_estimators': 100, 'max_depth': 4,
                         'min_samples_split': 2, 'learning_rate': 0.1,
                         'loss': 'ls'}

    # Friedman1
    X, y = datasets.make_friedman1(n_samples=1200,
                                   random_state=random_state,
                                   noise=1.0)
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]

    for presort in True, False:
        clf = GradientBoostingRegressor(presort=presort)
        clf.fit(X_train, y_train)
        mse = mean_squared_error(y_test, clf.predict(X_test))
        assert_less(mse, 5.0)

    # Friedman2
    X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state)
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]

    for presort in True, False:
        regression_params['presort'] = presort
        clf = GradientBoostingRegressor(**regression_params)
        clf.fit(X_train, y_train)
        mse = mean_squared_error(y_test, clf.predict(X_test))
        assert_less(mse, 1700.0)

    # Friedman3
    X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state)
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]

    for presort in True, False:
        regression_params['presort'] = presort
        clf = GradientBoostingRegressor(**regression_params)
        clf.fit(X_train, y_train)
        mse = mean_squared_error(y_test, clf.predict(X_test))
        assert_less(mse, 0.015) 
Example #13
Source File: test_gradient_boosting.py    From twitter-stock-recommendation with MIT License 4 votes vote down vote up
def test_regression_synthetic():
    # Test on synthetic regression datasets used in Leo Breiman,
    # `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996).
    random_state = check_random_state(1)
    regression_params = {'n_estimators': 100, 'max_depth': 4,
                         'min_samples_split': 2, 'learning_rate': 0.1,
                         'loss': 'ls'}

    # Friedman1
    X, y = datasets.make_friedman1(n_samples=1200,
                                   random_state=random_state,
                                   noise=1.0)
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]

    for presort in True, False:
        clf = GradientBoostingRegressor(presort=presort)
        clf.fit(X_train, y_train)
        mse = mean_squared_error(y_test, clf.predict(X_test))
        assert_less(mse, 5.0)

    # Friedman2
    X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state)
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]

    for presort in True, False:
        regression_params['presort'] = presort
        clf = GradientBoostingRegressor(**regression_params)
        clf.fit(X_train, y_train)
        mse = mean_squared_error(y_test, clf.predict(X_test))
        assert_less(mse, 1700.0)

    # Friedman3
    X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state)
    X_train, y_train = X[:200], y[:200]
    X_test, y_test = X[200:], y[200:]

    for presort in True, False:
        regression_params['presort'] = presort
        clf = GradientBoostingRegressor(**regression_params)
        clf.fit(X_train, y_train)
        mse = mean_squared_error(y_test, clf.predict(X_test))
        assert_less(mse, 0.015)