Python sklearn.datasets.load_wine() Examples

The following are 10 code examples of sklearn.datasets.load_wine(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module sklearn.datasets , or try the search function .
Example #1
Source File: test_base.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_load_wine():
    res = load_wine()
    assert_equal(res.data.shape, (178, 13))
    assert_equal(res.target.size, 178)
    assert_equal(res.target_names.size, 3)
    assert res.DESCR

    # test return_X_y option
    check_return_X_y(res, partial(load_wine)) 
Example #2
Source File: figures.py    From smote_variants with MIT License 5 votes vote down vote up
def generate_multiclass_figures():
    oversamplers= sv.get_all_oversamplers()
    oversamplers= [o for o in oversamplers if not sv.OverSampling.cat_changes_majority in o.categories and 'proportion' in o().get_params()]
    
    import sklearn.datasets as datasets
    
    dataset= datasets.load_wine()
    
    X= dataset['data']
    y= dataset['target']
    
    import matplotlib.pyplot as plt
    
    import sklearn.preprocessing as preprocessing
    
    ss= preprocessing.StandardScaler()
    
    X_ss= ss.fit_transform(X)
    
    def plot_and_save(X, y, filename, oversampler_name):
        plt.figure(figsize=(4, 3))
        plt.scatter(X[y == 0][:,0], X[y == 0][:,1], c='r', marker='o', label='class 0')
        plt.scatter(X[y == 1][:,0], X[y == 1][:,1], c='b', marker='P', label='class 1')
        plt.scatter(X[y == 2][:,0], X[y == 2][:,1], c='green', marker='x', label='class 2')
        plt.xlabel('feature 0')
        plt.ylabel('feature 1')
        plt.title(", ".join(["wine dataset", oversampler_name]))
        plt.savefig(filename)
        plt.show()
    
    plot_and_save(X, y, 'figures/multiclass-base.png', "No Oversampling")
    
    for o in oversamplers:
        print(o.__name__)
        mcos= sv.MulticlassOversampling(o())
        X_samp, y_samp= mcos.sample(X_ss, y)
        plot_and_save(ss.inverse_transform(X_samp), y_samp, "figures/multiclass-%s" % o.__name__, o.__name__) 
Example #3
Source File: tests.py    From smote_variants with MIT License 5 votes vote down vote up
def test_multiclass(self):
        dataset = datasets.load_wine()

        oversampler = sv.MulticlassOversampling(sv.distance_SMOTE())

        X_samp, y_samp = oversampler.sample(dataset['data'], dataset['target'])

        self.assertTrue(len(X_samp) > 0)

        oversampler = sv.MulticlassOversampling(
            sv.distance_SMOTE(), strategy='equalize_1_vs_many')

        X_samp, y_samp = oversampler.sample(dataset['data'], dataset['target'])

        self.assertTrue(len(X_samp) > 0) 
Example #4
Source File: tests.py    From smote_variants with MIT License 5 votes vote down vote up
def test_mlp_wrapper(self):
        dataset = datasets.load_wine()
        classifier = sv.MLPClassifierWrapper()
        classifier.fit(dataset['data'], dataset['target'])

        self.assertTrue(classifier is not None) 
Example #5
Source File: tests.py    From smote_variants with MIT License 5 votes vote down vote up
def test_cross_validate(self):
        X = np.vstack([data_min, data_maj])
        y = np.hstack([np.repeat(1, len(data_min)),
                       np.repeat(0, len(data_maj))])

        # setting cache path
        cache_path = os.path.join(os.path.expanduser('~'), 'smote_test')
        if not os.path.exists(cache_path):
            os.mkdir(cache_path)

        # prepare dataset
        dataset = {'data': X, 'target': y, 'name': 'ballpark_data'}

        # instantiating classifiers
        knn_classifier = KNeighborsClassifier()

        # instantiate the validation object
        results = sv.cross_validate(dataset=dataset,
                                    sampler=sv.SMOTE(),
                                    classifier=knn_classifier)

        self.assertTrue(len(results) > 0)

        dataset = datasets.load_wine()

        results = sv.cross_validate(dataset=dataset,
                                    sampler=sv.SMOTE(),
                                    classifier=knn_classifier)

        self.assertTrue(len(results) > 0) 
Example #6
Source File: dpath.py    From ycimpute with Apache License 2.0 5 votes vote down vote up
def wine():
    from sklearn.datasets import load_wine
    data = load_wine().data
    missing_data, full_data = create_data(data)
    h5_file = h5py.File('wine.hdf5', 'w')
    h5_file['missing'] = missing_data
    h5_file['full'] = full_data
    h5_file.close() 
Example #7
Source File: keras_mlflow.py    From optuna with MIT License 5 votes vote down vote up
def objective(trial):
    # Clear clutter from previous Keras session graphs.
    clear_session()

    X, y = load_wine(return_X_y=True)
    X = standardize(X)
    X_train, X_valid, y_train, y_valid = train_test_split(
        X, y, test_size=TEST_SIZE, random_state=42
    )

    model = create_model(X.shape[1], trial)
    model.fit(X_train, y_train, shuffle=True, batch_size=BATCHSIZE, epochs=EPOCHS, verbose=False)

    return model.evaluate(X_valid, y_valid, verbose=0) 
Example #8
Source File: test_utils.py    From pyDML with GNU General Public License v3.0 5 votes vote down vote up
def wine():
    return Xy_dataset(load_wine) 
Example #9
Source File: test_base.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_load_wine():
    res = load_wine()
    assert_equal(res.data.shape, (178, 13))
    assert_equal(res.target.size, 178)
    assert_equal(res.target_names.size, 3)
    assert_true(res.DESCR)

    # test return_X_y option
    X_y_tuple = load_wine(return_X_y=True)
    bunch = load_wine()
    assert_true(isinstance(X_y_tuple, tuple))
    assert_array_equal(X_y_tuple[0], bunch.data)
    assert_array_equal(X_y_tuple[1], bunch.target) 
Example #10
Source File: wine.py    From qiskit-aqua with Apache License 2.0 4 votes vote down vote up
def wine(training_size, test_size, n, plot_data=False):
    """ returns wine dataset """
    class_labels = [r'A', r'B', r'C']

    data, target = datasets.load_wine(return_X_y=True)
    sample_train, sample_test, label_train, label_test = \
        train_test_split(data, target, test_size=test_size, random_state=7)

    # Now we standardize for gaussian around 0 with unit variance
    std_scale = StandardScaler().fit(sample_train)
    sample_train = std_scale.transform(sample_train)
    sample_test = std_scale.transform(sample_test)

    # Now reduce number of features to number of qubits
    pca = PCA(n_components=n).fit(sample_train)
    sample_train = pca.transform(sample_train)
    sample_test = pca.transform(sample_test)

    # Scale to the range (-1,+1)
    samples = np.append(sample_train, sample_test, axis=0)
    minmax_scale = MinMaxScaler((-1, 1)).fit(samples)
    sample_train = minmax_scale.transform(sample_train)
    sample_test = minmax_scale.transform(sample_test)
    # Pick training size number of samples from each distro
    training_input = {key: (sample_train[label_train == k, :])[:training_size]
                      for k, key in enumerate(class_labels)}
    test_input = {key: (sample_test[label_test == k, :])[:test_size]
                  for k, key in enumerate(class_labels)}

    if plot_data:
        try:
            import matplotlib.pyplot as plt
        except ImportError:
            raise NameError('Matplotlib not installed. Please install it before plotting')
        for k in range(0, 3):
            plt.scatter(sample_train[label_train == k, 0][:training_size],
                        sample_train[label_train == k, 1][:training_size])

        plt.title("PCA dim. reduced Wine dataset")
        plt.show()

    return sample_train, training_input, test_input, class_labels