Python sklearn.datasets.fetch_kddcup99() Examples

The following are 4 code examples of sklearn.datasets.fetch_kddcup99(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module sklearn.datasets , or try the search function .
Example #1
Source File: test_kddcup99.py    From Mastering-Elasticsearch-7.0 with MIT License 5 votes vote down vote up
def test_percent10():
    try:
        data = fetch_kddcup99(download_if_missing=False)
    except IOError:
        raise SkipTest("kddcup99 dataset can not be loaded.")

    assert_equal(data.data.shape, (494021, 41))
    assert_equal(data.target.shape, (494021,))

    data_shuffled = fetch_kddcup99(shuffle=True, random_state=0)
    assert_equal(data.data.shape, data_shuffled.data.shape)
    assert_equal(data.target.shape, data_shuffled.target.shape)

    data = fetch_kddcup99('SA')
    assert_equal(data.data.shape, (100655, 41))
    assert_equal(data.target.shape, (100655,))

    data = fetch_kddcup99('SF')
    assert_equal(data.data.shape, (73237, 4))
    assert_equal(data.target.shape, (73237,))

    data = fetch_kddcup99('http')
    assert_equal(data.data.shape, (58725, 3))
    assert_equal(data.target.shape, (58725,))

    data = fetch_kddcup99('smtp')
    assert_equal(data.data.shape, (9571, 3))
    assert_equal(data.target.shape, (9571,))

    fetch_func = partial(fetch_kddcup99, 'smtp')
    check_return_X_y(data, fetch_func) 
Example #2
Source File: test_kddcup99.py    From Mastering-Elasticsearch-7.0 with MIT License 5 votes vote down vote up
def test_shuffle():
    try:
        dataset = fetch_kddcup99(random_state=0, subset='SA', shuffle=True,
                                 percent10=True, download_if_missing=False)
    except IOError:
        raise SkipTest("kddcup99 dataset can not be loaded.")

    assert(any(dataset.target[-100:] == b'normal.')) 
Example #3
Source File: kdd.py    From mixed-anomaly with Apache License 2.0 5 votes vote down vote up
def load_train_test_data(small: bool, train_normal_only: bool) -> Tuple[Tuple[pd.DataFrame, np.ndarray], Tuple[pd.DataFrame, np.ndarray]]:
    X, y = fetch_kddcup99(subset='SA', percent10=small, return_X_y=True)
    columns = ["duration", "protocol_type", "service", "flag", "src_bytes", "dst_bytes", "land", "wrong_fragment",
               "urgent", "hot", "num_failed_logins", "logged_in", "num_compromised", "root_shell", "su_attempted",
               "num_root", "num_file_creations", "num_shells", "num_access_files", "num_outbound_cmds", "is_host_login",
               "is_guest_login", "count", "srv_count", "serror_rate", "srv_serror_rate", "rerror_rate", "srv_rerror_rate",
               "same_srv_rate", "diff_srv_rate", "srv_diff_host_rate", "dst_host_count", "dst_host_srv_count", "dst_host_same_srv_rate",
               "dst_host_diff_srv_rate", "dst_host_same_src_port_rate", "dst_host_srv_diff_host_rate", "dst_host_serror_rate",
               "dst_host_srv_serror_rate", "dst_host_rerror_rate", "dst_host_srv_rerror_rate"]
    categorical_columns = ["protocol_type", "flag", "service"]
    features = pd.DataFrame(X, columns=columns)
    target = (y == b'normal.') * 1
    for categorical_column in categorical_columns:
        features[categorical_column] = features[categorical_column].astype('category')
    number_anomalies = np.sum(1 - target)
    number_test_samples = 2 * number_anomalies
    if train_normal_only:
        features_train, features_test = features.iloc[:-number_test_samples], features.iloc[-number_test_samples:]
        target_train, target_test = target[:-number_test_samples], target[-number_test_samples:]
    else:
        test_indices = np.random.choice(a=range(len(features)), size=number_test_samples, replace=False)
        features_train, features_test = features.drop(test_indices), features.loc[test_indices]
        target_train, target_test = np.delete(target, test_indices), target[test_indices]
    return (features_train, target_train), (features_test, target_test)


# features, target= load_train_test_data(small=True, train_normal_only=True)

# print(features.columns) 
Example #4
Source File: test_kddcup99.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_percent10():
    try:
        data = fetch_kddcup99(download_if_missing=False)
    except IOError:
        raise SkipTest("kddcup99 dataset can not be loaded.")

    assert_equal(data.data.shape, (494021, 41))
    assert_equal(data.target.shape, (494021,))

    data_shuffled = fetch_kddcup99(shuffle=True, random_state=0)
    assert_equal(data.data.shape, data_shuffled.data.shape)
    assert_equal(data.target.shape, data_shuffled.target.shape)

    data = fetch_kddcup99('SA')
    assert_equal(data.data.shape, (100655, 41))
    assert_equal(data.target.shape, (100655,))

    data = fetch_kddcup99('SF')
    assert_equal(data.data.shape, (73237, 4))
    assert_equal(data.target.shape, (73237,))

    data = fetch_kddcup99('http')
    assert_equal(data.data.shape, (58725, 3))
    assert_equal(data.target.shape, (58725,))

    data = fetch_kddcup99('smtp')
    assert_equal(data.data.shape, (9571, 3))
    assert_equal(data.target.shape, (9571,))