Python sklearn.datasets.make_multilabel_classification() Examples
The following are 30
code examples of sklearn.datasets.make_multilabel_classification().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.datasets
, or try the search function
.
Example #1
Source File: test_ranking.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def check_alternative_lrap_implementation(lrap_score, n_classes=5, n_samples=20, random_state=0): _, y_true = make_multilabel_classification(n_features=1, allow_unlabeled=False, random_state=random_state, n_classes=n_classes, n_samples=n_samples) # Score with ties y_score = sparse_random_matrix(n_components=y_true.shape[0], n_features=y_true.shape[1], random_state=random_state) if hasattr(y_score, "toarray"): y_score = y_score.toarray() score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) # Uniform score random_state = check_random_state(random_state) y_score = random_state.uniform(size=(n_samples, n_classes)) score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap)
Example #2
Source File: test_ranking.py From twitter-stock-recommendation with MIT License | 6 votes |
def check_alternative_lrap_implementation(lrap_score, n_classes=5, n_samples=20, random_state=0): _, y_true = make_multilabel_classification(n_features=1, allow_unlabeled=False, random_state=random_state, n_classes=n_classes, n_samples=n_samples) # Score with ties y_score = sparse_random_matrix(n_components=y_true.shape[0], n_features=y_true.shape[1], random_state=random_state) if hasattr(y_score, "toarray"): y_score = y_score.toarray() score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) # Uniform score random_state = check_random_state(random_state) y_score = random_state.uniform(size=(n_samples, n_classes)) score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap)
Example #3
Source File: test_mlp.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_predict_proba_multilabel(): # Test that predict_proba works as expected for multilabel. # Multilabel should not use softmax which makes probabilities sum to 1 X, Y = make_multilabel_classification(n_samples=50, random_state=0, return_indicator=True) n_samples, n_classes = Y.shape clf = MLPClassifier(solver='lbfgs', hidden_layer_sizes=30, random_state=0) clf.fit(X, Y) y_proba = clf.predict_proba(X) assert_equal(y_proba.shape, (n_samples, n_classes)) assert_array_equal(y_proba > 0.5, Y) y_log_proba = clf.predict_log_proba(X) proba_max = y_proba.argmax(axis=1) proba_log_max = y_log_proba.argmax(axis=1) assert_greater((y_proba.sum(1) - 1).dot(y_proba.sum(1) - 1), 1e-10) assert_array_equal(proba_max, proba_log_max) assert_array_equal(y_log_proba, np.log(y_proba))
Example #4
Source File: test_mlp.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_multilabel_classification(): # Test that multi-label classification works as expected. # test fit method X, y = make_multilabel_classification(n_samples=50, random_state=0, return_indicator=True) mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=50, alpha=1e-5, max_iter=150, random_state=0, activation='logistic', learning_rate_init=0.2) mlp.fit(X, y) assert_greater(mlp.score(X, y), 0.97) # test partial fit method mlp = MLPClassifier(solver='sgd', hidden_layer_sizes=50, max_iter=150, random_state=0, activation='logistic', alpha=1e-5, learning_rate_init=0.2) for i in range(100): mlp.partial_fit(X, y, classes=[0, 1, 2, 3, 4]) assert_greater(mlp.score(X, y), 0.9) # Make sure early stopping still work now that spliting is stratified by # default (it is disabled for multilabel classification) mlp = MLPClassifier(early_stopping=True) mlp.fit(X, y).predict(X)
Example #5
Source File: test_multiclass.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_ovr_multilabel_dataset(): base_clf = MultinomialNB(alpha=1) for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=au, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) assert clf.multilabel_ assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"), prec, decimal=2) assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"), recall, decimal=2)
Example #6
Source File: test_common.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_multilabel_sample_weight_invariance(name): # multilabel indicator random_state = check_random_state(0) _, ya = make_multilabel_classification(n_features=1, n_classes=20, random_state=0, n_samples=100, allow_unlabeled=False) _, yb = make_multilabel_classification(n_features=1, n_classes=20, random_state=1, n_samples=100, allow_unlabeled=False) y_true = np.vstack([ya, yb]) y_pred = np.vstack([ya, ya]) y_score = random_state.randint(1, 4, size=y_true.shape) metric = ALL_METRICS[name] if name in THRESHOLDED_METRICS: check_sample_weight_invariance(name, metric, y_true, y_score) else: check_sample_weight_invariance(name, metric, y_true, y_pred)
Example #7
Source File: test_mlp.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_multilabel_classification(): # Test that multi-label classification works as expected. # test fit method X, y = make_multilabel_classification(n_samples=50, random_state=0, return_indicator=True) mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=50, alpha=1e-5, max_iter=150, random_state=0, activation='logistic', learning_rate_init=0.2) mlp.fit(X, y) assert_equal(mlp.score(X, y), 1) # test partial fit method mlp = MLPClassifier(solver='sgd', hidden_layer_sizes=50, max_iter=150, random_state=0, activation='logistic', alpha=1e-5, learning_rate_init=0.2) for i in range(100): mlp.partial_fit(X, y, classes=[0, 1, 2, 3, 4]) assert_greater(mlp.score(X, y), 0.9)
Example #8
Source File: test_mlp.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_predict_proba_multilabel(): # Test that predict_proba works as expected for multilabel. # Multilabel should not use softmax which makes probabilities sum to 1 X, Y = make_multilabel_classification(n_samples=50, random_state=0, return_indicator=True) n_samples, n_classes = Y.shape clf = MLPClassifier(solver='lbfgs', hidden_layer_sizes=30, random_state=0) clf.fit(X, Y) y_proba = clf.predict_proba(X) assert_equal(y_proba.shape, (n_samples, n_classes)) assert_array_equal(y_proba > 0.5, Y) y_log_proba = clf.predict_log_proba(X) proba_max = y_proba.argmax(axis=1) proba_log_max = y_log_proba.argmax(axis=1) assert_greater((y_proba.sum(1) - 1).dot(y_proba.sum(1) - 1), 1e-10) assert_array_equal(proba_max, proba_log_max) assert_array_equal(y_log_proba, np.log(y_proba))
Example #9
Source File: test_multiclass.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_ovr_multilabel_dataset(): base_clf = MultinomialNB(alpha=1) for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=au, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) assert_true(clf.multilabel_) assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"), prec, decimal=2) assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"), recall, decimal=2)
Example #10
Source File: test_samples_generator.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_make_multilabel_classification_return_indicator(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert np.all(np.sum(Y, axis=0) > min_length) # Also test return_distributions and return_indicator with True X2, Y2, p_c, p_w_c = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled, return_distributions=True) assert_array_almost_equal(X, X2) assert_array_equal(Y, Y2) assert_equal(p_c.shape, (3,)) assert_almost_equal(p_c.sum(), 1) assert_equal(p_w_c.shape, (20, 3)) assert_almost_equal(p_w_c.sum(axis=0), [1] * 3)
Example #11
Source File: test_classification.py From scikit-hubness with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_sparse_multilabel_targets(n_neighbors, n_jobs): X, y_dense = make_multilabel_classification(random_state=123) thresh = 80 knn = KNeighborsClassifier(n_neighbors=n_neighbors, n_jobs=n_jobs, ) assert not issparse(y_dense) knn.fit(X[:thresh], y_dense[:thresh]) y_pred = knn.predict(X[thresh:]) y_sparse = csr_matrix(y_dense) knn = KNeighborsClassifier(n_neighbors=n_neighbors, n_jobs=n_jobs,) assert issparse(y_sparse) knn.fit(X[:thresh], y_sparse[:thresh]) y_pred_sparse = knn.predict(X[thresh:, :]) # Test array equality np.testing.assert_array_equal(y_pred, y_pred_sparse.toarray())
Example #12
Source File: test_samples_generator.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_make_multilabel_classification_return_indicator(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(np.all(np.sum(Y, axis=0) > min_length)) # Also test return_distributions and return_indicator with True X2, Y2, p_c, p_w_c = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled, return_distributions=True) assert_array_equal(X, X2) assert_array_equal(Y, Y2) assert_equal(p_c.shape, (3,)) assert_almost_equal(p_c.sum(), 1) assert_equal(p_w_c.shape, (20, 3)) assert_almost_equal(p_w_c.sum(axis=0), [1] * 3)
Example #13
Source File: data_manager.py From Auto-PyTorch with Apache License 2.0 | 6 votes |
def generate_classification(self, num_classes, num_features, num_samples, test_split=0.1, seed=0): """Generate a classification task Arguments: num_classes {int} -- Number of classes num_features {int} -- Number of features num_samples {int} -- Number of samples Keyword Arguments: test_split {float} -- Size of test split (default: {0.1}) seed {int} -- A random seed (default: {0}) """ #X, Y = make_classification(n_samples=800, n_features=num_feats, n_classes=num_classes, n_informative=4) X, y = make_multilabel_classification( n_samples=num_samples, n_features=num_features, n_classes=num_classes, n_labels=0.01, length=50, allow_unlabeled=False, sparse=False, return_indicator='dense', return_distributions=False, random_state=seed ) Y = np.argmax(y, axis=1) self.categorical_features = [False] * num_features self.problem_type = ProblemType.FeatureClassification self.X, self.Y = X, Y self._split_data(test_split, seed)
Example #14
Source File: test_common.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_averaging_multilabel(n_classes=5, n_samples=40): _, y = make_multilabel_classification(n_features=1, n_classes=n_classes, random_state=5, n_samples=n_samples, allow_unlabeled=False) y_true = y[:20] y_pred = y[20:] y_score = check_random_state(0).normal(size=(20, n_classes)) y_true_binarize = y_true y_pred_binarize = y_pred for name in METRICS_WITH_AVERAGING + THRESHOLDED_METRICS_WITH_AVERAGING: yield (_named_check(check_averaging, name), name, y_true, y_true_binarize, y_pred, y_pred_binarize, y_score)
Example #15
Source File: test_forest.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_sparse_input(): X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50) for name, sparse_matrix in product(FOREST_ESTIMATORS, (csr_matrix, csc_matrix, coo_matrix)): yield check_sparse_input, name, X, sparse_matrix(X), y
Example #16
Source File: test_forest.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_random_hasher_sparse_data(): X, y = datasets.make_multilabel_classification(random_state=0) hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X_transformed = hasher.fit_transform(X) X_transformed_sparse = hasher.fit_transform(csc_matrix(X)) assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray())
Example #17
Source File: test_gradient_boosting.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_sparse_input(): ests = (GradientBoostingClassifier, GradientBoostingRegressor) sparse_matrices = (csr_matrix, csc_matrix, coo_matrix) y, X = datasets.make_multilabel_classification(random_state=0, n_samples=50, n_features=1, n_classes=20) y = y[:, 0] for EstimatorClass, sparse_matrix in product(ests, sparse_matrices): yield check_sparse_input, EstimatorClass, X, sparse_matrix(X), y
Example #18
Source File: test_voting_classifier.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_multilabel(): """Check if error is raised for multilabel classification.""" X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=123) clf = OneVsRestClassifier(SVC(kernel='linear')) eclf = VotingClassifier(estimators=[('ovr', clf)], voting='hard') try: eclf.fit(X, y) except NotImplementedError: return
Example #19
Source File: test_tree.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_presort_sparse(): ests = (DecisionTreeClassifier(presort=True), DecisionTreeRegressor(presort=True)) sparse_matrices = (csr_matrix, csc_matrix, coo_matrix) y, X = datasets.make_multilabel_classification(random_state=0, n_samples=50, n_features=1, n_classes=20) y = y[:, 0] for est, sparse_matrix in product(ests, sparse_matrices): yield check_presort_sparse, est, sparse_matrix(X), y
Example #20
Source File: test_common.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_multilabel_representation_invariance(): # Generate some data n_classes = 4 n_samples = 50 _, y1 = make_multilabel_classification(n_features=1, n_classes=n_classes, random_state=0, n_samples=n_samples, allow_unlabeled=True) _, y2 = make_multilabel_classification(n_features=1, n_classes=n_classes, random_state=1, n_samples=n_samples, allow_unlabeled=True) # To make sure at least one empty label is present y1 = np.vstack([y1, [[0] * n_classes]]) y2 = np.vstack([y2, [[0] * n_classes]]) y1_sparse_indicator = sp.coo_matrix(y1) y2_sparse_indicator = sp.coo_matrix(y2) for name in MULTILABELS_METRICS: metric = ALL_METRICS[name] # XXX cruel hack to work with partial functions if isinstance(metric, partial): metric.__module__ = 'tmp' metric.__name__ = name measure = metric(y1, y2) # Check representation invariance assert_almost_equal(metric(y1_sparse_indicator, y2_sparse_indicator), measure, err_msg="%s failed representation invariance " "between dense and sparse indicator " "formats." % name)
Example #21
Source File: test_common.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_normalize_option_multilabel_classification(): # Test in the multilabel case n_classes = 4 n_samples = 100 # for both random_state 0 and 1, y_true and y_pred has at least one # unlabelled entry _, y_true = make_multilabel_classification(n_features=1, n_classes=n_classes, random_state=0, allow_unlabeled=True, n_samples=n_samples) _, y_pred = make_multilabel_classification(n_features=1, n_classes=n_classes, random_state=1, allow_unlabeled=True, n_samples=n_samples) # To make sure at least one empty label is present y_true += [0]*n_classes y_pred += [0]*n_classes for name in METRICS_WITH_NORMALIZE_OPTION: metrics = ALL_METRICS[name] measure = metrics(y_true, y_pred, normalize=True) assert_greater(measure, 0, msg="We failed to test correctly the normalize option") assert_almost_equal(metrics(y_true, y_pred, normalize=False) / n_samples, measure, err_msg="Failed with %s" % name)
Example #22
Source File: test_samples_generator.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_make_multilabel_classification_return_indicator_sparse(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, return_indicator='sparse', allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert sp.issparse(Y)
Example #23
Source File: test_score_objects.py From twitter-stock-recommendation with MIT License | 5 votes |
def setup_module(): # Create some memory mapped data global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS TEMP_FOLDER = tempfile.mkdtemp(prefix='sklearn_test_score_objects_') X, y = make_classification(n_samples=30, n_features=5, random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) filename = os.path.join(TEMP_FOLDER, 'test_data.pkl') joblib.dump((X, y, y_ml), filename) X_mm, y_mm, y_ml_mm = joblib.load(filename, mmap_mode='r') ESTIMATORS = _make_estimators(X_mm, y_mm, y_ml_mm)
Example #24
Source File: test_validation.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_cross_val_predict_sparse_prediction(): # check that cross_val_predict gives same result for sparse and dense input X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) X_sparse = csr_matrix(X) y_sparse = csr_matrix(y) classif = OneVsRestClassifier(SVC(kernel='linear')) preds = cross_val_predict(classif, X, y, cv=10) preds_sparse = cross_val_predict(classif, X_sparse, y_sparse, cv=10) preds_sparse = preds_sparse.toarray() assert_array_almost_equal(preds_sparse, preds)
Example #25
Source File: test_multiclass.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_ovr_multilabel_predict_proba(): base_clf = MultinomialNB(alpha=1) for au in (False, True): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=au, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # Decision function only estimator. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_false(hasattr(decision_only, 'predict_proba')) # Estimator with predict_proba disabled, depending on parameters. decision_only = OneVsRestClassifier(svm.SVC(probability=False)) assert_false(hasattr(decision_only, 'predict_proba')) decision_only.fit(X_train, Y_train) assert_false(hasattr(decision_only, 'predict_proba')) assert_true(hasattr(decision_only, 'decision_function')) # Estimator which can get predict_proba enabled after fitting gs = GridSearchCV(svm.SVC(probability=False), param_grid={'probability': [True]}) proba_after_fit = OneVsRestClassifier(gs) assert_false(hasattr(proba_after_fit, 'predict_proba')) proba_after_fit.fit(X_train, Y_train) assert_true(hasattr(proba_after_fit, 'predict_proba')) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred)
Example #26
Source File: test_multiclass.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_ovr_multilabel_decision_function(): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal((clf.decision_function(X_test) > 0).astype(int), clf.predict(X_test))
Example #27
Source File: test_cross_validation.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_cross_val_predict_sparse_prediction(): # check that cross_val_predict gives same result for sparse and dense input X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) X_sparse = csr_matrix(X) y_sparse = csr_matrix(y) classif = OneVsRestClassifier(SVC(kernel='linear')) preds = cval.cross_val_predict(classif, X, y, cv=10) preds_sparse = cval.cross_val_predict(classif, X_sparse, y_sparse, cv=10) preds_sparse = preds_sparse.toarray() assert_array_almost_equal(preds_sparse, preds)
Example #28
Source File: test_grid_search.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(y.shape[0], random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i])
Example #29
Source File: test_samples_generator.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_make_multilabel_classification_return_sequences(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=100, n_features=20, n_classes=3, random_state=0, return_indicator=False, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (100, 20), "X shape mismatch") if not allow_unlabeled: assert_equal(max([max(y) for y in Y]), 2) assert_equal(min([len(y) for y in Y]), min_length) assert_true(max([len(y) for y in Y]) <= 3)
Example #30
Source File: test_samples_generator.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_make_multilabel_classification_return_indicator_sparse(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, return_indicator='sparse', allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(sp.issparse(Y))