Python torchvision.transforms.RandomGrayscale() Examples
The following are 6
code examples of torchvision.transforms.RandomGrayscale().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.transforms
, or try the search function
.
Example #1
Source File: data_loader.py From self-supervised-da with MIT License | 6 votes |
def get_jig_train_transformers(args): size = args.img_transform.random_resize_crop.size scale = args.img_transform.random_resize_crop.scale img_tr = [transforms.RandomResizedCrop((int(size[0]), int(size[1])), (scale[0], scale[1]))] if args.img_transform.random_horiz_flip > 0.0: img_tr.append(transforms.RandomHorizontalFlip(args.img_transform.random_horiz_flip)) if args.img_transform.jitter > 0.0: img_tr.append(transforms.ColorJitter( brightness=args.img_transform.jitter, contrast=args.img_transform.jitter, saturation=args.jitter, hue=min(0.5, args.jitter))) tile_tr = [] if args.jig_transform.tile_random_grayscale: tile_tr.append(transforms.RandomGrayscale(args.jig_transform.tile_random_grayscale)) mean = args.normalize.mean std = args.normalize.std tile_tr = tile_tr + [transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)] return transforms.Compose(img_tr), transforms.Compose(tile_tr)
Example #2
Source File: datasets.py From amdim-public with MIT License | 6 votes |
def __init__(self): # flipping image along vertical axis self.flip_lr = transforms.RandomHorizontalFlip(p=0.5) # image augmentation functions normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]]) col_jitter = transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.2)], p=0.8) img_jitter = transforms.RandomApply([ RandomTranslateWithReflect(4)], p=0.8) rnd_gray = transforms.RandomGrayscale(p=0.25) # main transform for self-supervised training self.train_transform = transforms.Compose([ img_jitter, col_jitter, rnd_gray, transforms.ToTensor(), normalize ]) # transform for testing self.test_transform = transforms.Compose([ transforms.ToTensor(), normalize ])
Example #3
Source File: datasets.py From amdim-public with MIT License | 6 votes |
def __init__(self): # image augmentation functions self.flip_lr = transforms.RandomHorizontalFlip(p=0.5) rand_crop = \ transforms.RandomResizedCrop(128, scale=(0.3, 1.0), ratio=(0.7, 1.4), interpolation=INTERP) col_jitter = transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8) rnd_gray = transforms.RandomGrayscale(p=0.25) post_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.test_transform = transforms.Compose([ transforms.Resize(146, interpolation=INTERP), transforms.CenterCrop(128), post_transform ]) self.train_transform = transforms.Compose([ rand_crop, col_jitter, rnd_gray, post_transform ])
Example #4
Source File: datasets.py From amdim-public with MIT License | 5 votes |
def __init__(self): # flipping image along vertical axis self.flip_lr = transforms.RandomHorizontalFlip(p=0.5) normalize = transforms.Normalize(mean=(0.43, 0.42, 0.39), std=(0.27, 0.26, 0.27)) # image augmentation functions col_jitter = transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.2)], p=0.8) rnd_gray = transforms.RandomGrayscale(p=0.25) rand_crop = \ transforms.RandomResizedCrop(64, scale=(0.3, 1.0), ratio=(0.7, 1.4), interpolation=INTERP) self.test_transform = transforms.Compose([ transforms.Resize(70, interpolation=INTERP), transforms.CenterCrop(64), transforms.ToTensor(), normalize ]) self.train_transform = transforms.Compose([ rand_crop, col_jitter, rnd_gray, transforms.ToTensor(), normalize ])
Example #5
Source File: utils.py From instance-segmentation-pytorch with GNU General Public License v3.0 | 5 votes |
def image_random_grayscaler(p=0.5): return transforms.RandomGrayscale(p=p)
Example #6
Source File: data_helper.py From JigenDG with GNU Affero General Public License v3.0 | 5 votes |
def get_train_transformers(args): img_tr = [transforms.RandomResizedCrop((int(args.image_size), int(args.image_size)), (args.min_scale, args.max_scale))] if args.random_horiz_flip > 0.0: img_tr.append(transforms.RandomHorizontalFlip(args.random_horiz_flip)) if args.jitter > 0.0: img_tr.append(transforms.ColorJitter(brightness=args.jitter, contrast=args.jitter, saturation=args.jitter, hue=min(0.5, args.jitter))) tile_tr = [] if args.tile_random_grayscale: tile_tr.append(transforms.RandomGrayscale(args.tile_random_grayscale)) tile_tr = tile_tr + [transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])] return transforms.Compose(img_tr), transforms.Compose(tile_tr)