Python torchvision.transforms.RandomVerticalFlip() Examples
The following are 13
code examples of torchvision.transforms.RandomVerticalFlip().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.transforms
, or try the search function
.
Example #1
Source File: dataset.py From sepconv with MIT License | 6 votes |
def __init__(self, patches, use_cache, augment_data): super(PatchDataset, self).__init__() self.patches = patches self.crop = CenterCrop(config.CROP_SIZE) if augment_data: self.random_transforms = [RandomRotation((90, 90)), RandomVerticalFlip(1.0), RandomHorizontalFlip(1.0), (lambda x: x)] self.get_aug_transform = (lambda: random.sample(self.random_transforms, 1)[0]) else: # Transform does nothing. Not sure if horrible or very elegant... self.get_aug_transform = (lambda: (lambda x: x)) if use_cache: self.load_patch = data_manager.load_cached_patch else: self.load_patch = data_manager.load_patch print('Dataset ready with {} tuples.'.format(len(patches)))
Example #2
Source File: data_loader.py From real-world-sr with MIT License | 6 votes |
def __init__(self, noisy_dir, crop_size, upscale_factor=4, cropped=False, flips=False, rotations=False, **kwargs): super(TrainDataset, self).__init__() # get all directories used for training if isinstance(noisy_dir, str): noisy_dir = [noisy_dir] self.files = [] for n_dir in noisy_dir: self.files += [join(n_dir, x) for x in listdir(n_dir) if utils.is_image_file(x)] # intitialize image transformations and variables self.input_transform = T.Compose([ T.RandomVerticalFlip(0.5 if flips else 0.0), T.RandomHorizontalFlip(0.5 if flips else 0.0), T.RandomCrop(crop_size) ]) self.crop_transform = T.RandomCrop(crop_size // upscale_factor) self.upscale_factor = upscale_factor self.cropped = cropped self.rotations = rotations
Example #3
Source File: utils_model.py From HistoGAN with GNU General Public License v3.0 | 6 votes |
def get_data_transforms(): data_transforms = { 'train': transforms.Compose([ transforms.CenterCrop(config.patch_size), transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.2), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), Random90Rotation(), transforms.ToTensor(), transforms.Normalize([0.7, 0.6, 0.7], [0.15, 0.15, 0.15]) #mean and standard deviations for lung adenocarcinoma resection slides ]), 'val': transforms.Compose([ transforms.CenterCrop(config.patch_size), transforms.ToTensor(), transforms.Normalize([0.7, 0.6, 0.7], [0.15, 0.15, 0.15]) ]), 'unnormalize': transforms.Compose([ transforms.Normalize([1/0.15, 1/0.15, 1/0.15], [1/0.15, 1/0.15, 1/0.15]) ]), } return data_transforms #printing the model
Example #4
Source File: data_loader.py From real-world-sr with MIT License | 5 votes |
def __init__(self, dataset_dir, crop_size, upscale_factor=4, flips=False, rotations=False, **kwargs): super(DiscDataset, self).__init__() self.files = [join(dataset_dir, x) for x in listdir(dataset_dir) if utils.is_image_file(x)] self.input_transform = T.Compose([ T.RandomVerticalFlip(0.5 if flips else 0.0), T.RandomHorizontalFlip(0.5 if flips else 0.0), T.RandomCrop(crop_size // upscale_factor) ]) self.rotations = rotations
Example #5
Source File: preproc.py From pt.darts with MIT License | 5 votes |
def data_transforms(dataset, cutout_length): dataset = dataset.lower() if dataset == 'cifar10': MEAN = [0.49139968, 0.48215827, 0.44653124] STD = [0.24703233, 0.24348505, 0.26158768] transf = [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip() ] elif dataset == 'mnist': MEAN = [0.13066051707548254] STD = [0.30810780244715075] transf = [ transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=0.1) ] elif dataset == 'fashionmnist': MEAN = [0.28604063146254594] STD = [0.35302426207299326] transf = [ transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=0.1), transforms.RandomVerticalFlip() ] else: raise ValueError('not expected dataset = {}'.format(dataset)) normalize = [ transforms.ToTensor(), transforms.Normalize(MEAN, STD) ] train_transform = transforms.Compose(transf + normalize) valid_transform = transforms.Compose(normalize) if cutout_length > 0: train_transform.transforms.append(Cutout(cutout_length)) return train_transform, valid_transform
Example #6
Source File: utils.py From CAE-ADMM with MIT License | 5 votes |
def __init__(self, folder_path): self.files = sorted(glob.glob('%s/*.*' % folder_path)) self.transform = transforms.Compose([ transforms.RandomCrop(128), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor() ])
Example #7
Source File: loader.py From nni with MIT License | 5 votes |
def get_tta_transforms(index, pad_mode): tta_transforms = { 0: [], 1: [transforms.RandomHorizontalFlip(p=2.)], 2: [transforms.RandomVerticalFlip(p=2.)], 3: [transforms.RandomHorizontalFlip(p=2.), transforms.RandomVerticalFlip(p=2.)] } if pad_mode == 'resize': return transforms.Compose([transforms.Resize((H, W)), *(tta_transforms[index]), *img_transforms]) else: return transforms.Compose([*(tta_transforms[index]), *img_transforms])
Example #8
Source File: basic_dataset.py From srntt-pytorch with Apache License 2.0 | 5 votes |
def __init__(self, data_dir, scale_factor, patch_size=0, mode='train'): assert patch_size % scale_factor == 0 assert (mode == 'train' and patch_size != 0) or mode == 'eval' if isinstance(data_dir, str): data_dir = Path(data_dir) self.filenames = [f for f in data_dir.glob('*') if is_image(f)] self.scale_factor = scale_factor if mode == 'train': self.transforms = transforms.Compose([ transforms.RandomCrop( patch_size, pad_if_needed=True, padding_mode='reflect'), transforms.RandomApply([ functools.partial(TF.rotate, angle=0), functools.partial(TF.rotate, angle=90), functools.partial(TF.rotate, angle=180), functools.partial(TF.rotate, angle=270), ]), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), ]) elif mode == 'eval': self.filenames.sort() if patch_size > 0: self.transforms = transforms.Compose([ transforms.CenterCrop(patch_size) ]) else: self.transforms = transforms.Compose([ functools.partial(pad, scale=scale_factor) ]) else: raise NotImplementedError
Example #9
Source File: utils.py From models-comparison.pytorch with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, opts, scale=0.875, random_crop=False, random_hflip=False, random_vflip=False): if type(opts) == dict: opts = munchify(opts) self.input_size = opts.input_size self.input_space = opts.input_space self.input_range = opts.input_range self.mean = opts.mean self.std = opts.std # https://github.com/tensorflow/models/blob/master/research/inception/inception/image_processing.py#L294 self.scale = scale self.random_crop = random_crop self.random_hflip = random_hflip self.random_vflip = random_vflip tfs = [] tfs.append(transforms.Resize(int(math.floor(max(self.input_size)/self.scale)))) if random_crop: tfs.append(transforms.RandomCrop(max(self.input_size))) else: tfs.append(transforms.CenterCrop(max(self.input_size))) if random_hflip: tfs.append(transforms.RandomHorizontalFlip()) if random_vflip: tfs.append(transforms.RandomVerticalFlip()) tfs.append(transforms.ToTensor()) tfs.append(ToSpaceBGR(self.input_space=='BGR')) tfs.append(ToRange255(max(self.input_range)==255)) tfs.append(transforms.Normalize(mean=self.mean, std=self.std)) self.tf = transforms.Compose(tfs)
Example #10
Source File: utils.py From pretorched-x with MIT License | 4 votes |
def __init__(self, opts, scale=0.875, random_crop=False, random_hflip=False, random_vflip=False, preserve_aspect_ratio=True): if type(opts) == dict: opts = munchify(opts) self.input_size = opts.input_size self.input_space = opts.input_space self.input_range = opts.input_range self.mean = opts.mean self.std = opts.std # https://github.com/tensorflow/models/blob/master/research/inception/inception/image_processing.py#L294 self.scale = scale self.random_crop = random_crop self.random_hflip = random_hflip self.random_vflip = random_vflip tfs = [] if preserve_aspect_ratio: tfs.append(transforms.Resize(int(math.floor(max(self.input_size)/self.scale)))) else: height = int(self.input_size[1] / self.scale) width = int(self.input_size[2] / self.scale) tfs.append(transforms.Resize((height, width))) if random_crop: tfs.append(transforms.RandomCrop(max(self.input_size))) else: tfs.append(transforms.CenterCrop(max(self.input_size))) if random_hflip: tfs.append(transforms.RandomHorizontalFlip()) if random_vflip: tfs.append(transforms.RandomVerticalFlip()) tfs.append(transforms.ToTensor()) tfs.append(ToSpaceBGR(self.input_space=='BGR')) tfs.append(ToRange255(max(self.input_range)==255)) tfs.append(transforms.Normalize(mean=self.mean, std=self.std)) self.tf = transforms.Compose(tfs)
Example #11
Source File: utils.py From pretrained-models.pytorch with BSD 3-Clause "New" or "Revised" License | 4 votes |
def __init__(self, opts, scale=0.875, random_crop=False, random_hflip=False, random_vflip=False, preserve_aspect_ratio=True): if type(opts) == dict: opts = munchify(opts) self.input_size = opts.input_size self.input_space = opts.input_space self.input_range = opts.input_range self.mean = opts.mean self.std = opts.std # https://github.com/tensorflow/models/blob/master/research/inception/inception/image_processing.py#L294 self.scale = scale self.random_crop = random_crop self.random_hflip = random_hflip self.random_vflip = random_vflip tfs = [] if preserve_aspect_ratio: tfs.append(transforms.Resize(int(math.floor(max(self.input_size)/self.scale)))) else: height = int(self.input_size[1] / self.scale) width = int(self.input_size[2] / self.scale) tfs.append(transforms.Resize((height, width))) if random_crop: tfs.append(transforms.RandomCrop(max(self.input_size))) else: tfs.append(transforms.CenterCrop(max(self.input_size))) if random_hflip: tfs.append(transforms.RandomHorizontalFlip()) if random_vflip: tfs.append(transforms.RandomVerticalFlip()) tfs.append(transforms.ToTensor()) tfs.append(ToSpaceBGR(self.input_space=='BGR')) tfs.append(ToRange255(max(self.input_range)==255)) tfs.append(transforms.Normalize(mean=self.mean, std=self.std)) self.tf = transforms.Compose(tfs)
Example #12
Source File: preproc.py From NAS-Benchmark with GNU General Public License v3.0 | 4 votes |
def data_transforms(dataset, cutout_length): dataset = dataset.lower() if dataset == 'cifar10' or dataset == 'cifar100': MEAN = [0.49139968, 0.48215827, 0.44653124] STD = [0.24703233, 0.24348505, 0.26158768] transf_train = [ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip() ] transf_val = [] elif dataset == 'mnist': MEAN = [0.13066051707548254] STD = [0.30810780244715075] transf_train = [ transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=0.1) ] transf_val=[] elif dataset == 'fashionmnist': MEAN = [0.28604063146254594] STD = [0.35302426207299326] transf_train = [ transforms.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=0.1), transforms.RandomVerticalFlip() ] transf_val = [] #Same preprocessing for ImageNet, Sport8 and MIT67 elif dataset in utils.LARGE_DATASETS: MEAN = [0.485, 0.456, 0.406] STD = [0.229, 0.224, 0.225] transf_train = [ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter( brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2) ] transf_val = [ transforms.Resize(256), transforms.CenterCrop(224), ] else: raise ValueError('not expected dataset = {}'.format(dataset)) normalize = [ transforms.ToTensor(), transforms.Normalize(MEAN, STD) ] train_transform = transforms.Compose(transf_train + normalize) valid_transform = transforms.Compose(transf_val + normalize) # FIXME validation is not set to square proportions, is this an issue? if cutout_length > 0: train_transform.transforms.append(Cutout(cutout_length)) return train_transform, valid_transform
Example #13
Source File: datasets.py From ultra-thin-PRM with MIT License | 4 votes |
def image_transform( image_size: Union[int, List[int]], augmentation: dict = {}, mean: List[float] = [0.485, 0.456, 0.406], std: List[float] = [0.229, 0.224, 0.225]) -> Callable: """Image transforms. """ if isinstance(image_size, int): image_size = (image_size, image_size) else: image_size = tuple(image_size) # data augmentations horizontal_flip = augmentation.pop('horizontal_flip', None) if horizontal_flip is not None: assert isinstance(horizontal_flip, float) and 0 <= horizontal_flip <= 1 vertical_flip = augmentation.pop('vertical_flip', None) if vertical_flip is not None: assert isinstance(vertical_flip, float) and 0 <= vertical_flip <= 1 random_crop = augmentation.pop('random_crop', None) if random_crop is not None: assert isinstance(random_crop, dict) center_crop = augmentation.pop('center_crop', None) if center_crop is not None: assert isinstance(center_crop, (int, list)) if len(augmentation) > 0: raise NotImplementedError('Invalid augmentation options: %s.' % ', '.join(augmentation.keys())) t = [ transforms.Resize(image_size) if random_crop is None else transforms.RandomResizedCrop(image_size[0], **random_crop), transforms.CenterCrop(center_crop) if center_crop is not None else None, transforms.RandomHorizontalFlip(horizontal_flip) if horizontal_flip is not None else None, transforms.RandomVerticalFlip(vertical_flip) if vertical_flip is not None else None, transforms.ToTensor(), transforms.Normalize(mean, std)] return transforms.Compose([v for v in t if v is not None])