Python torchvision.transforms.ColorJitter() Examples
The following are 30
code examples of torchvision.transforms.ColorJitter().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.transforms
, or try the search function
.
Example #1
Source File: data_loader.py From self-supervised-da with MIT License | 7 votes |
def get_rot_train_transformers(args): size = args.img_transform.random_resize_crop.size scale = args.img_transform.random_resize_crop.scale img_tr = [transforms.RandomResizedCrop((int(size[0]), int(size[1])), (scale[0], scale[1]))] if args.img_transform.random_horiz_flip > 0.0: img_tr.append(transforms.RandomHorizontalFlip(args.img_transform.random_horiz_flip)) if args.img_transform.jitter > 0.0: img_tr.append(transforms.ColorJitter( brightness=args.img_transform.jitter, contrast=args.img_transform.jitter, saturation=args.jitter, hue=min(0.5, args.jitter))) mean = args.normalize.mean std = args.normalize.std img_tr += [transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)] return transforms.Compose(img_tr)
Example #2
Source File: datasets.py From garbageClassifier with MIT License | 6 votes |
def __init__(self, data_dir, image_size, is_train=True, **kwargs): self.image_size = image_size self.image_paths = [] self.image_labels = [] self.classes = sorted(os.listdir(data_dir)) for idx, cls_ in enumerate(self.classes): self.image_paths += glob.glob(os.path.join(data_dir, cls_, '*.*')) self.image_labels += [idx] * len(glob.glob(os.path.join(data_dir, cls_, '*.*'))) self.indexes = list(range(len(self.image_paths))) if is_train: random.shuffle(self.indexes) self.transform = transforms.Compose([transforms.RandomResizedCrop(image_size), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=1, contrast=1, saturation=0.5, hue=0.5), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) else: self.transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
Example #3
Source File: utils.py From NAS-Benchmark with GNU General Public License v3.0 | 6 votes |
def data_transforms_food101(): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_transform = transforms.Compose([ transforms.RandomResizedCrop(128), # default bilinear for interpolation transforms.RandomHorizontalFlip(), transforms.ColorJitter( brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2), transforms.ToTensor(), normalize, ]) valid_transform = transforms.Compose([ transforms.Resize(128), transforms.CenterCrop(128), transforms.ToTensor(), normalize, ]) return train_transform, valid_transform
Example #4
Source File: data_loader_stargan.py From adversarial-object-removal with MIT License | 6 votes |
def __init__(self, transform, mode, select_attrs=[], out_img_size=64, bbox_out_size=32, randomrotate=0, scaleRange=[0.1, 0.9], squareAspectRatio=False, use_celeb=False): self.image_path = os.path.join('data','mnist') self.mode = mode self.iouThresh = 0.5 self.maxDigits= 1 self.minDigits = 1 self.use_celeb = use_celeb self.scaleRange = scaleRange self.squareAspectRatio = squareAspectRatio self.nc = 1 if not self.use_celeb else 3 transList = [transforms.RandomHorizontalFlip(), transforms.RandomRotation(randomrotate,resample=Image.BICUBIC)]#, transforms.ColorJitter(0.5,0.5,0.5,0.3) self.digitTransforms = transforms.Compose(transList) self.dataset = MNIST(self.image_path,train=True, transform=self.digitTransforms) if not use_celeb else CelebDataset('./data/celebA/images', './data/celebA/list_attr_celeba.txt', self.digitTransforms, mode) self.num_data = len(self.dataset) self.metadata = {'images':[]} self.catid2attr = {} self.out_img_size = out_img_size self.bbox_out_size = bbox_out_size self.selected_attrs = select_attrs print ('Start preprocessing dataset..!') self.preprocess() print ('Finished preprocessing dataset..!')
Example #5
Source File: datasets.py From amdim-public with MIT License | 6 votes |
def __init__(self): # flipping image along vertical axis self.flip_lr = transforms.RandomHorizontalFlip(p=0.5) # image augmentation functions normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]]) col_jitter = transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.2)], p=0.8) img_jitter = transforms.RandomApply([ RandomTranslateWithReflect(4)], p=0.8) rnd_gray = transforms.RandomGrayscale(p=0.25) # main transform for self-supervised training self.train_transform = transforms.Compose([ img_jitter, col_jitter, rnd_gray, transforms.ToTensor(), normalize ]) # transform for testing self.test_transform = transforms.Compose([ transforms.ToTensor(), normalize ])
Example #6
Source File: utils.py From NAS-Benchmark with GNU General Public License v3.0 | 6 votes |
def data_transforms_imagenet(): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_transform = transforms.Compose([ transforms.RandomResizedCrop(128), transforms.RandomHorizontalFlip(), transforms.ColorJitter( brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2), transforms.ToTensor(), normalize, ]) valid_transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(128), transforms.ToTensor(), normalize, ]) return train_transform, valid_transform
Example #7
Source File: datasets.py From amdim-public with MIT License | 6 votes |
def __init__(self): # image augmentation functions self.flip_lr = transforms.RandomHorizontalFlip(p=0.5) rand_crop = \ transforms.RandomResizedCrop(128, scale=(0.3, 1.0), ratio=(0.7, 1.4), interpolation=INTERP) col_jitter = transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8) rnd_gray = transforms.RandomGrayscale(p=0.25) post_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.test_transform = transforms.Compose([ transforms.Resize(146, interpolation=INTERP), transforms.CenterCrop(128), post_transform ]) self.train_transform = transforms.Compose([ rand_crop, col_jitter, rnd_gray, post_transform ])
Example #8
Source File: preprocess.py From pytorch_quantization with MIT License | 6 votes |
def imgnet_transform(is_training=True): if is_training: transform_list = transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.3), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) else: transform_list = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) return transform_list
Example #9
Source File: imagenet.py From nasnet-pytorch with MIT License | 6 votes |
def preprocess(self): if self.train: return transforms.Compose([ transforms.RandomResizedCrop(self.image_size), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2), transforms.ToTensor(), transforms.Normalize(self.mean, self.std), ]) else: return transforms.Compose([ transforms.Resize((int(self.image_size / 0.875), int(self.image_size / 0.875))), transforms.CenterCrop(self.image_size), transforms.ToTensor(), transforms.Normalize(self.mean, self.std), ])
Example #10
Source File: data_loader.py From self-supervised-da with MIT License | 6 votes |
def get_jig_train_transformers(args): size = args.img_transform.random_resize_crop.size scale = args.img_transform.random_resize_crop.scale img_tr = [transforms.RandomResizedCrop((int(size[0]), int(size[1])), (scale[0], scale[1]))] if args.img_transform.random_horiz_flip > 0.0: img_tr.append(transforms.RandomHorizontalFlip(args.img_transform.random_horiz_flip)) if args.img_transform.jitter > 0.0: img_tr.append(transforms.ColorJitter( brightness=args.img_transform.jitter, contrast=args.img_transform.jitter, saturation=args.jitter, hue=min(0.5, args.jitter))) tile_tr = [] if args.jig_transform.tile_random_grayscale: tile_tr.append(transforms.RandomGrayscale(args.jig_transform.tile_random_grayscale)) mean = args.normalize.mean std = args.normalize.std tile_tr = tile_tr + [transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)] return transforms.Compose(img_tr), transforms.Compose(tile_tr)
Example #11
Source File: deep_globe.py From GLNet with MIT License | 6 votes |
def __init__(self, root, ids, label=False, transform=False): super(DeepGlobe, self).__init__() """ Args: fileDir(string): directory with all the input images. transform(callable, optional): Optional transform to be applied on a sample """ self.root = root self.label = label self.transform = transform self.ids = ids self.classdict = {1: "urban", 2: "agriculture", 3: "rangeland", 4: "forest", 5: "water", 6: "barren", 0: "unknown"} self.color_jitter = transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.04) self.resizer = transforms.Resize((2448, 2448))
Example #12
Source File: cifar10_cls_dataset.py From imgclsmob with MIT License | 6 votes |
def cifar10_train_transform(ds_metainfo, mean_rgb=(0.4914, 0.4822, 0.4465), std_rgb=(0.2023, 0.1994, 0.2010), jitter_param=0.4): assert (ds_metainfo is not None) assert (ds_metainfo.input_image_size[0] == 32) return transforms.Compose([ transforms.RandomCrop( size=32, padding=4), transforms.RandomHorizontalFlip(), transforms.ColorJitter( brightness=jitter_param, contrast=jitter_param, saturation=jitter_param), transforms.ToTensor(), transforms.Normalize( mean=mean_rgb, std=std_rgb) ])
Example #13
Source File: utils.py From WS-DAN.PyTorch with MIT License | 6 votes |
def get_transform(resize, phase='train'): if phase == 'train': return transforms.Compose([ transforms.Resize(size=(int(resize[0] / 0.875), int(resize[1] / 0.875))), transforms.RandomCrop(resize), transforms.RandomHorizontalFlip(0.5), transforms.ColorJitter(brightness=0.126, saturation=0.5), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) else: return transforms.Compose([ transforms.Resize(size=(int(resize[0] / 0.875), int(resize[1] / 0.875))), transforms.CenterCrop(resize), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
Example #14
Source File: utils_model.py From HistoGAN with GNU General Public License v3.0 | 6 votes |
def get_data_transforms(): data_transforms = { 'train': transforms.Compose([ transforms.CenterCrop(config.patch_size), transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.2), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), Random90Rotation(), transforms.ToTensor(), transforms.Normalize([0.7, 0.6, 0.7], [0.15, 0.15, 0.15]) #mean and standard deviations for lung adenocarcinoma resection slides ]), 'val': transforms.Compose([ transforms.CenterCrop(config.patch_size), transforms.ToTensor(), transforms.Normalize([0.7, 0.6, 0.7], [0.15, 0.15, 0.15]) ]), 'unnormalize': transforms.Compose([ transforms.Normalize([1/0.15, 1/0.15, 1/0.15], [1/0.15, 1/0.15, 1/0.15]) ]), } return data_transforms #printing the model
Example #15
Source File: datasets.py From nni with MIT License | 6 votes |
def build_train_transform(self, distort_color, resize_scale): print('Color jitter: %s' % distort_color) if distort_color == 'strong': color_transform = transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1) elif distort_color == 'normal': color_transform = transforms.ColorJitter(brightness=32. / 255., saturation=0.5) else: color_transform = None if color_transform is None: train_transforms = transforms.Compose([ transforms.RandomResizedCrop(self.image_size, scale=(resize_scale, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), self.normalize, ]) else: train_transforms = transforms.Compose([ transforms.RandomResizedCrop(self.image_size, scale=(resize_scale, 1.0)), transforms.RandomHorizontalFlip(), color_transform, transforms.ToTensor(), self.normalize, ]) return train_transforms
Example #16
Source File: preprocessing.py From pytorch_DoReFaNet with MIT License | 6 votes |
def imgnet_transform(is_training=True): if is_training: transform_list = transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.3), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) else: transform_list = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) return transform_list
Example #17
Source File: utils.py From NAS-Benchmark with GNU General Public License v3.0 | 5 votes |
def data_transforms_large(dataset, cutout_length): dataset = dataset.lower() MEAN = [0.485, 0.456, 0.406] STD = [0.229, 0.224, 0.225] transf_train = [ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter( brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2) ] transf_val = [ transforms.Resize(256), transforms.CenterCrop(224), ] normalize = [ transforms.ToTensor(), transforms.Normalize(MEAN, STD) ] train_transform = transforms.Compose(transf_train + normalize) valid_transform = transforms.Compose( transf_val + normalize) # FIXME validation is not set to square proportions, is this an issue? if cutout_length > 0: train_transform.transforms.append(Cutout(cutout_length)) return train_transform, valid_transform
Example #18
Source File: dataset.py From EAST with MIT License | 5 votes |
def __getitem__(self, index): with open(self.gt_files[index], 'r') as f: lines = f.readlines() vertices, labels = extract_vertices(lines) img = Image.open(self.img_files[index]) img, vertices = adjust_height(img, vertices) img, vertices = rotate_img(img, vertices) img, vertices = crop_img(img, vertices, labels, self.length) transform = transforms.Compose([transforms.ColorJitter(0.5, 0.5, 0.5, 0.25), \ transforms.ToTensor(), \ transforms.Normalize(mean=(0.5,0.5,0.5),std=(0.5,0.5,0.5))]) score_map, geo_map, ignored_map = get_score_geo(img, vertices, labels, self.scale, self.length) return transform(img), score_map, geo_map, ignored_map
Example #19
Source File: utils.py From instance-segmentation-pytorch with GNU General Public License v3.0 | 5 votes |
def image_random_color_jitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2): return transforms.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)
Example #20
Source File: train.py From Holocron with MIT License | 5 votes |
def load_data(datadir): # Data loading code print("Loading data") normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) print("Loading training data") st = time.time() dataset = VOCDetection(datadir, image_set='train', download=True, transforms=Compose([VOCTargetTransform(classes), Resize(512), RandomResizedCrop(416), RandomHorizontalFlip(), convert_to_relative, ImageTransform(transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.1, hue=0.02)), ImageTransform(transforms.ToTensor()), ImageTransform(normalize)])) print("Took", time.time() - st) print("Loading validation data") st = time.time() dataset_test = VOCDetection(datadir, image_set='val', download=True, transforms=Compose([VOCTargetTransform(classes), Resize(416), CenterCrop(416), convert_to_relative, ImageTransform(transforms.ToTensor()), ImageTransform(normalize)])) print("Took", time.time() - st) print("Creating data loaders") train_sampler = torch.utils.data.RandomSampler(dataset) test_sampler = torch.utils.data.SequentialSampler(dataset_test) return dataset, dataset_test, train_sampler, test_sampler
Example #21
Source File: train.py From Holocron with MIT License | 5 votes |
def load_data(datadir): # Data loading code print("Loading data") normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) base_size = 320 crop_size = 256 min_size = int(0.5 * base_size) max_size = int(2.0 * base_size) print("Loading training data") st = time.time() dataset = VOCSegmentation(datadir, image_set='train', download=True, transforms=Compose([RandomResize(min_size, max_size), RandomHorizontalFlip(0.5), RandomCrop(crop_size), SampleTransform(transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.1, hue=0.02)), ToTensor(), SampleTransform(normalize)])) print("Took", time.time() - st) print("Loading validation data") st = time.time() dataset_test = VOCSegmentation(datadir, image_set='val', download=True, transforms=Compose([RandomResize(base_size, base_size), ToTensor(), SampleTransform(normalize)])) print("Took", time.time() - st) print("Creating data loaders") train_sampler = torch.utils.data.RandomSampler(dataset) test_sampler = torch.utils.data.SequentialSampler(dataset_test) return dataset, dataset_test, train_sampler, test_sampler
Example #22
Source File: charadesrgb.py From actor-observer with GNU General Public License v3.0 | 5 votes |
def get(cls, args, scale=(0.08, 1.0)): """ Entry point. Call this function to get all Charades dataloaders """ normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_file = args.train_file val_file = args.val_file train_dataset = cls( args.data, 'train', train_file, args.cache, args.cache_buster, transform=transforms.Compose([ transforms.RandomResizedCrop(args.inputsize, scale), transforms.ColorJitter( brightness=0.4, contrast=0.4, saturation=0.4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), # missing PCA lighting jitter normalize, ])) val_dataset = cls( args.data, 'val', val_file, args.cache, args.cache_buster, transform=transforms.Compose([ transforms.Resize(int(256. / 224 * args.inputsize)), transforms.CenterCrop(args.inputsize), transforms.ToTensor(), normalize, ])) valvideo_dataset = cls( args.data, 'val_video', val_file, args.cache, args.cache_buster, transform=transforms.Compose([ transforms.Resize(int(256. / 224 * args.inputsize)), transforms.CenterCrop(args.inputsize), transforms.ToTensor(), normalize, ])) return train_dataset, val_dataset, valvideo_dataset
Example #23
Source File: train.py From Holocron with MIT License | 5 votes |
def load_data(traindir, valdir, half=False): # Data loading code print("Loading data") normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) print("Loading training data") st = time.time() dataset = torchvision.datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.1, hue=0.02), transforms.ToTensor(), normalize, # transforms.RandomErasing(p=0.9, value='random') ])) print("Took", time.time() - st) print("Loading validation data") dataset_test = torchvision.datasets.ImageFolder( valdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize ])) print("Creating data loaders") train_sampler = torch.utils.data.RandomSampler(dataset) test_sampler = torch.utils.data.SequentialSampler(dataset_test) return dataset, dataset_test, train_sampler, test_sampler
Example #24
Source File: datasets.py From amdim-public with MIT License | 5 votes |
def __init__(self): # flipping image along vertical axis self.flip_lr = transforms.RandomHorizontalFlip(p=0.5) normalize = transforms.Normalize(mean=(0.43, 0.42, 0.39), std=(0.27, 0.26, 0.27)) # image augmentation functions col_jitter = transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.2)], p=0.8) rnd_gray = transforms.RandomGrayscale(p=0.25) rand_crop = \ transforms.RandomResizedCrop(64, scale=(0.3, 1.0), ratio=(0.7, 1.4), interpolation=INTERP) self.test_transform = transforms.Compose([ transforms.Resize(70, interpolation=INTERP), transforms.CenterCrop(64), transforms.ToTensor(), normalize ]) self.train_transform = transforms.Compose([ rand_crop, col_jitter, rnd_gray, transforms.ToTensor(), normalize ])
Example #25
Source File: model.py From derplearning with MIT License | 5 votes |
def compose_transforms(transform_config): """ Apply all image transforms """ transform_list = [] for perturb_config in transform_config: if perturb_config["name"] == "colorjitter": transform = transforms.ColorJitter( brightness=perturb_config["brightness"], contrast=perturb_config["contrast"], saturation=perturb_config["saturation"], hue=perturb_config["hue"], ) transform_list.append(transform) transform_list.append(transforms.ToTensor()) return transforms.Compose(transform_list)
Example #26
Source File: transforms.py From RCRNet-Pytorch with MIT License | 5 votes |
def __init__(self, image_mode, **kwargs): super(ColorJitter, self).__init__(**kwargs) self.transform = None self.image_mode = image_mode
Example #27
Source File: imagenet.py From nni with MIT License | 5 votes |
def _imagenet_dataset(config): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dir = os.path.join(config.data_dir, "train") test_dir = os.path.join(config.data_dir, "val") if hasattr(config, "use_aa") and config.use_aa: train_data = dset.ImageFolder( train_dir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), ImageNetPolicy(), transforms.ToTensor(), normalize, ])) else: train_data = dset.ImageFolder( train_dir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter( brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2), transforms.ToTensor(), normalize, ])) test_data = dset.ImageFolder( test_dir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) return train_data, test_data
Example #28
Source File: augmentation.py From nni with MIT License | 5 votes |
def test_color_trans(): img_id = '00abc623a.jpg' img = Image.open(os.path.join(settings.TRAIN_IMG_DIR, img_id)).convert('RGB') trans = ColorJitter(0.1, 0.1, 0.1, 0.1) img2 = trans(img) img.show() img2.show()
Example #29
Source File: loader.py From nni with MIT License | 5 votes |
def get_train_loaders(ifold, batch_size=8, dev_mode=False, pad_mode='edge', meta_version=1, pseudo_label=False, depths=False): train_shuffle = True train_meta, val_meta = get_nfold_split(ifold, nfold=10, meta_version=meta_version) if pseudo_label: test_meta = get_test_meta() train_meta = train_meta.append(test_meta, sort=True) if dev_mode: train_shuffle = False train_meta = train_meta.iloc[:10] val_meta = val_meta.iloc[:10] #print(val_meta[X_COLUMN].values[:5]) #print(val_meta[Y_COLUMN].values[:5]) print(train_meta.shape, val_meta.shape) img_mask_aug_train, img_mask_aug_val = get_img_mask_augments(pad_mode, depths) train_set = ImageDataset(True, train_meta, augment_with_target=img_mask_aug_train, image_augment=transforms.ColorJitter(0.2, 0.2, 0.2, 0.2), image_transform=get_image_transform(pad_mode), mask_transform=get_mask_transform(pad_mode)) train_loader = data.DataLoader(train_set, batch_size=batch_size, shuffle=train_shuffle, num_workers=4, collate_fn=train_set.collate_fn, drop_last=True) train_loader.num = len(train_set) val_set = ImageDataset(True, val_meta, augment_with_target=img_mask_aug_val, image_augment=None, image_transform=get_image_transform(pad_mode), mask_transform=get_mask_transform(pad_mode)) val_loader = data.DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=val_set.collate_fn) val_loader.num = len(val_set) val_loader.y_true = read_masks(val_meta[ID_COLUMN].values) return train_loader, val_loader
Example #30
Source File: face_sketch_data.py From Face-Sketch-Wild with MIT License | 5 votes |
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, sharp=0.0): super(ColorJitter, self).__init__(brightness, contrast, saturation, hue) self.sharp = sharp