Python scipy.sparse.save_npz() Examples
The following are 18
code examples of scipy.sparse.save_npz().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.sparse
, or try the search function
.
Example #1
Source File: base_attack.py From DeepRobust with MIT License | 6 votes |
def save_adj(self, root=r'/tmp/', name='mod_adj'): """Save attacked adjacency matrix. Parameters ---------- root : root directory where the variable should be saved name : str saved file name Returns ------- None. """ assert self.modified_adj is not None, \ 'modified_adj is None! Please perturb the graph first.' name = name + '.npz' modified_adj = self.modified_adj if type(modified_adj) is torch.Tensor: sparse_adj = utils.to_scipy(modified_adj) sp.save_npz(osp.join(root, name), sparse_adj) else: sp.save_npz(osp.join(root, name), modified_adj)
Example #2
Source File: base_attack.py From DeepRobust with MIT License | 6 votes |
def save_adj(self, root=r'/tmp/', name='mod_adj'): """Save attacked adjacency matrix. Parameters ---------- root : root directory where the variable should be saved name : str saved file name Returns ------- None. """ assert self.modified_adj is not None, \ 'modified_adj is None! Please perturb the graph first.' name = name + '.npz' modified_adj = self.modified_adj if type(modified_adj) is torch.Tensor: sparse_adj = utils.to_scipy(modified_adj) sp.save_npz(osp.join(root, name), sparse_adj) else: sp.save_npz(osp.join(root, name), modified_adj)
Example #3
Source File: reddit_fit_topics.py From causal-text-embeddings with MIT License | 5 votes |
def load_term_counts(reddit, path='../dat/reddit/', force_redo=False): count_filename = path + 'term_counts' vocab_filename = path + 'vocab' if os.path.exists(count_filename + '.npz') and not force_redo: return sparse.load_npz(count_filename + '.npz'), np.load(vocab_filename + '.npy') post_docs = reddit['post_text'].values counts, vocab, _ = tokenize_documents(post_docs) sparse.save_npz(count_filename, counts) np.save(vocab_filename, vocab) return counts, np.array(vocab)
Example #4
Source File: dump_tfidf.py From denspi with Apache License 2.0 | 5 votes |
def main(): args = get_args() if args.nfs: from nsml import NSML_NFS_OUTPUT args.dump_dir = os.path.join(NSML_NFS_OUTPUT, args.dump_dir) args.out_dir = os.path.join(NSML_NFS_OUTPUT, args.out_dir) args.ranker_path = os.path.join(NSML_NFS_OUTPUT, args.ranker_path) args.ranker_path = os.path.join(args.ranker_path, 'docs-tfidf-ngram=2-hash=16777216-tokenizer=simple.npz') os.makedirs(args.out_dir) assert os.path.isdir(args.dump_dir) dump_paths = sorted([os.path.join(args.dump_dir, name) for name in os.listdir(args.dump_dir) if 'hdf5' in name])[ args.start:args.end] print(dump_paths) dump_names = [os.path.splitext(os.path.basename(path))[0] for path in dump_paths] dump_ranges = [list(map(int, name.split('-'))) for name in dump_names] phrase_dumps = [h5py.File(path, 'r') for path in dump_paths] ranker = None ranker = MyTfidfDocRanker( tfidf_path=args.ranker_path, strict=False ) print('Ranker shape {} from {}'.format(ranker.doc_mat.shape, args.ranker_path)) # new_mat = ranker.doc_mat.T.tocsr() # sp.save_npz('doc_tfidf.npz', new_mat) dump_tfidf(ranker, phrase_dumps, dump_names, args)
Example #5
Source File: wikidatagraph.py From opentapioca with Apache License 2.0 | 5 votes |
def save_matrix(self, fname): sparse.save_npz(fname, self.mat)
Example #6
Source File: load_data.py From neural_graph_collaborative_filtering with MIT License | 5 votes |
def get_adj_mat(self): try: t1 = time() adj_mat = sp.load_npz(self.path + '/s_adj_mat.npz') norm_adj_mat = sp.load_npz(self.path + '/s_norm_adj_mat.npz') mean_adj_mat = sp.load_npz(self.path + '/s_mean_adj_mat.npz') print('already load adj matrix', adj_mat.shape, time() - t1) except Exception: adj_mat, norm_adj_mat, mean_adj_mat = self.create_adj_mat() sp.save_npz(self.path + '/s_adj_mat.npz', adj_mat) sp.save_npz(self.path + '/s_norm_adj_mat.npz', norm_adj_mat) sp.save_npz(self.path + '/s_mean_adj_mat.npz', mean_adj_mat) return adj_mat, norm_adj_mat, mean_adj_mat
Example #7
Source File: loader_nfm.py From knowledge_graph_attention_network with MIT License | 5 votes |
def get_kg_feature(self, kg_feat_file): try: kg_feat_mat = sp.load_npz(kg_feat_file) print('already load item kg feature mat', kg_feat_mat.shape) except Exception: kg_feat_mat = self._create_kg_feat_mat() sp.save_npz(kg_feat_file, kg_feat_mat) print('already save item kg feature mat:', kg_feat_file) return kg_feat_mat
Example #8
Source File: make-trie.py From isdi with MIT License | 5 votes |
def join_mats(fnames, s, e): ofname="mat_{}_{}".format(s, e) print(ofname, fnames) M = [sps.load_npz(f) for f in fnames] print("Done reading..") sps.save_npz( ofname, sps.vstack(M) )
Example #9
Source File: make-trie.py From isdi with MIT License | 5 votes |
def join_smart_mat(fnames): """Join arrays in Mlist inplace""" # M.indptr M.indices indptr = np.zeros(num_devices+1, dtype=np.int32) indices = np.zeros(Msize, dtype=np.int32) i_indptr, i_indices = 0, 0 ofname = 'joined_mat.npz' M = [None for _ in fnames] for i, mf in enumerate(fnames) : M[i] = sps.load_npz(mf) print("Loaded matrix={}. shape={}. nnz={}".format(mf, M[i].shape, M[i].nnz)) # Mindptr = M.indptr # Mindices = M.indices # indptr[i_indptr+1:i_indptr+len(Mindptr)] = Mindptr[1:] + indptr[i_indptr] # i_indptr += len(Mindptr)-1 # indices[i_indices:i_indices+len(Mindices)] = Mindices # i_indices += i_indices # del M print("Saving the file...") M = sps.csr_matrix( (np.ones(len(indices)), indices, indptr), shape=(len(indptr)-1, num_apps), dtype=bool ) print(M.nnz) sps.save_npz(ofname, M)
Example #10
Source File: make-trie.py From isdi with MIT License | 5 votes |
def create_matrix(mf, mfname, ofname_cnt): indptr = np.zeros(LIM+1, dtype=np.int32) indices = array.array('I') ofname = mfname.rsplit('.', 2)[0] + '.csr_matrix'.format(ofname_cnt) j = 0 for j, d in enumerate(mf): if j>LIM: break terms = d.decode('utf-8').strip().split(',') if len(terms)<1: continue i, terms = int(terms[0]), terms[1:] indices.extend([_get(t) for t in terms]) indptr[j%LIM+1] = len(indices) if j % 10000 == 0: print("Done {}".format(j)) # print("Saving: j={} start: {} stop: {}".format(j, start, stop)) if j>0: print("Saving... {}".format(ofname)) if len(indptr) > j: indptr = indptr[:j+2] print(len(indices), indptr) M = sps.csr_matrix( (np.ones(len(indices)), indices, indptr), shape=(len(indptr)-1, num_apps), dtype=bool ) print(M.nnz) sps.save_npz(ofname, M) create_matrix(mf, mfname, ofname_cnt+1)
Example #11
Source File: peerread_fit_topics.py From causal-text-embeddings with MIT License | 5 votes |
def load_term_counts(df, path='../dat/PeerRead/', force_redo=False, text_col='abstract_text'): count_filename = path + 'term_counts' vocab_filename = path + 'vocab' if os.path.exists(count_filename + '.npz') and not force_redo: return sparse.load_npz(count_filename + '.npz'), np.load(vocab_filename + '.npy') post_docs = df[text_col].values counts, vocab, _ = tokenize_documents(post_docs) sparse.save_npz(count_filename, counts) np.save(vocab_filename, vocab) return counts, np.array(vocab)
Example #12
Source File: hashing.py From deep_architect with MIT License | 5 votes |
def save_state(self, folderpath): state = { 'num_evals': len(self.vecs_lst), 'vals_lst': self.vals_lst, } ut.write_jsonfile(state, ut.join_paths([folderpath, 'hash_model_state.json'])) for i, vecs in enumerate(self.vecs_lst): sp.save_npz(ut.join_paths([folderpath, str(i) + '.npz']), vecs) # TODO: improve
Example #13
Source File: reddit_posts.py From causal-text-embeddings with MIT License | 5 votes |
def load_term_counts(path='../dat/', force_redo=False): count_filename = path + 'reddit_term_counts' vocab_filename = path + 'vocab' if os.path.exists(count_filename + '.npz') and not force_redo: return sparse.load_npz(count_filename + '.npz'), np.load(vocab_filename + '.npy') reddit = load_reddit() post_docs = reddit['post_text'].values counts, vocab = tokenize_documents(post_docs) sparse.save_npz(path + 'reddit_term_counts', counts) np.save(path + 'vocab', vocab) return counts, vocab
Example #14
Source File: peerread_output_att.py From causal-text-embeddings with MIT License | 5 votes |
def load_term_counts(df, path='../dat/PeerRead/', force_redo=False, text_col='abstract_text'): count_filename = path + 'term_counts' vocab_filename = path + 'vocab' if os.path.exists(count_filename + '.npz') and not force_redo: return sparse.load_npz(count_filename + '.npz').toarray(), np.load(vocab_filename + '.npy') post_docs = df[text_col].values counts, vocab, _ = tokenize_documents(post_docs) sparse.save_npz(count_filename, counts) np.save(vocab_filename, vocab) return counts.toarray(), np.array(vocab)
Example #15
Source File: reddit_output_att.py From causal-text-embeddings with MIT License | 5 votes |
def load_term_counts(reddit, path='../dat/reddit/', force_redo=False): count_filename = path + 'term_counts' vocab_filename = path + 'vocab' if os.path.exists(count_filename + '.npz') and not force_redo: return sparse.load_npz(count_filename + '.npz').toarray(), np.load(vocab_filename + '.npy') post_docs = reddit['post_text'].values counts, vocab, _ = tokenize_documents(post_docs) sparse.save_npz(count_filename, counts) np.save(vocab_filename, vocab) return counts.toarray(), np.array(vocab)
Example #16
Source File: base_attack.py From DeepRobust with MIT License | 5 votes |
def save_features(self, root=r'/tmp/', name='mod_features'): """Save attacked node feature matrix. Parameters ---------- root : root directory where the variable should be saved name : str saved file name Returns ------- None. """ assert self.modified_features is not None, \ 'modified_features is None! Please perturb the graph first.' name = name + '.npz' modified_features = self.modified_features if type(modified_features) is torch.Tensor: sparse_features = utils.to_scipy(modified_features) sp.save_npz(osp.join(root, name), sparse_features) else: sp.save_npz(osp.join(root, name), modified_features)
Example #17
Source File: base_attack.py From DeepRobust with MIT License | 5 votes |
def save_features(self, root=r'/tmp/', name='mod_features'): """Save attacked node feature matrix. Parameters ---------- root : root directory where the variable should be saved name : str saved file name Returns ------- None. """ assert self.modified_features is not None, \ 'modified_features is None! Please perturb the graph first.' name = name + '.npz' modified_features = self.modified_features if type(modified_features) is torch.Tensor: sparse_features = utils.to_scipy(modified_features) sp.save_npz(osp.join(root, name), sparse_features) else: sp.save_npz(osp.join(root, name), modified_features)
Example #18
Source File: libsvm.py From celer with BSD 3-Clause "New" or "Revised" License | 4 votes |
def get_X_y(dataset, compressed_path, multilabel, replace=False): """Load a LIBSVM dataset as sparse X and observation y/Y. If X and y already exists as npz and npy, they are not redownloaded unless replace=True.""" ext = '.npz' if multilabel else '.npy' y_path = pjoin(CELER_PATH, "%s_target%s" % (NAMES[dataset], ext)) X_path = pjoin(CELER_PATH, "%s_data.npz" % NAMES[dataset]) if replace or not os.path.isfile(y_path) or not os.path.isfile(X_path): tmp_path = pjoin(CELER_PATH, "%s" % NAMES[dataset]) decompressor = BZ2Decompressor() print("Decompressing...") with open(tmp_path, "wb") as f, open(compressed_path, "rb") as g: for data in iter(lambda: g.read(100 * 1024), b''): f.write(decompressor.decompress(data)) n_features_total = N_FEATURES[dataset] print("Loading svmlight file...") with open(tmp_path, 'rb') as f: X, y = load_svmlight_file( f, n_features_total, multilabel=multilabel) os.remove(tmp_path) X = sparse.csc_matrix(X) X.sort_indices() sparse.save_npz(X_path, X) if multilabel: indices = np.array([lab for labels in y for lab in labels]) indptr = np.cumsum([0] + [len(labels) for labels in y]) data = np.ones_like(indices) Y = sparse.csr_matrix((data, indices, indptr)) sparse.save_npz(y_path, Y) return X, Y else: np.save(y_path, y) else: X = sparse.load_npz(X_path) y = np.load(y_path) return X, y