Python scipy.sparse.name() Examples

The following are 30 code examples of scipy.sparse.name(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module scipy.sparse , or try the search function .
Example #1
Source File: test_series.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_concat_different_fill(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        for kind in ['integer', 'block']:
            sparse1 = pd.SparseSeries(val1, name='x', kind=kind)
            sparse2 = pd.SparseSeries(val2, name='y', kind=kind, fill_value=0)

            with tm.assert_produces_warning(PerformanceWarning):
                res = pd.concat([sparse1, sparse2])
            exp = pd.concat([pd.Series(val1), pd.Series(val2)])
            exp = pd.SparseSeries(exp, kind=kind)
            tm.assert_sp_series_equal(res, exp)

            with tm.assert_produces_warning(PerformanceWarning):
                res = pd.concat([sparse2, sparse1])
            exp = pd.concat([pd.Series(val2), pd.Series(val1)])
            exp = pd.SparseSeries(exp, kind=kind, fill_value=0)
            tm.assert_sp_series_equal(res, exp) 
Example #2
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_notna(self):
        # GH 8276
        s = pd.SparseSeries([np.nan, np.nan, 1, 2, np.nan], name='xxx')

        res = s.notna()
        exp = pd.SparseSeries([False, False, True, True, False], name='xxx',
                              fill_value=False)
        tm.assert_sp_series_equal(res, exp)

        # if fill_value is not nan, True can be included in sp_values
        s = pd.SparseSeries([np.nan, 0., 1., 2., 0.], name='xxx',
                            fill_value=0.)
        res = s.notna()
        assert isinstance(res, pd.SparseSeries)
        exp = pd.Series([False, True, True, True, True], name='xxx')
        tm.assert_series_equal(res.to_dense(), exp) 
Example #3
Source File: test_series.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_sparse_to_dense(self):
        arr, index = _test_data1()
        series = self.bseries.to_dense()
        tm.assert_series_equal(series, Series(arr, name='bseries'))

        # see gh-14647
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            series = self.bseries.to_dense(sparse_only=True)

        indexer = np.isfinite(arr)
        exp = Series(arr[indexer], index=index[indexer], name='bseries')
        tm.assert_series_equal(series, exp)

        series = self.iseries.to_dense()
        tm.assert_series_equal(series, Series(arr, name='iseries'))

        arr, index = _test_data1_zero()
        series = self.zbseries.to_dense()
        tm.assert_series_equal(series, Series(arr, name='zbseries'))

        series = self.ziseries.to_dense()
        tm.assert_series_equal(series, Series(arr)) 
Example #4
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_value_counts_int(self):
        vals = [1, 2, 0, 1, 2, 1, 2, 0, 1, 1]
        dense = pd.Series(vals, name='xx')

        # fill_value is np.nan, but should not be included in the result
        sparse = pd.SparseSeries(vals, name='xx')
        tm.assert_series_equal(sparse.value_counts(),
                               dense.value_counts())
        tm.assert_series_equal(sparse.value_counts(dropna=False),
                               dense.value_counts(dropna=False))

        sparse = pd.SparseSeries(vals, name='xx', fill_value=0)
        tm.assert_series_equal(sparse.value_counts(),
                               dense.value_counts())
        tm.assert_series_equal(sparse.value_counts(dropna=False),
                               dense.value_counts(dropna=False)) 
Example #5
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_to_frame(self):
        # GH 9850
        s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x')
        exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_sp_frame_equal(s.to_frame(), exp)

        exp = pd.SparseDataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_sp_frame_equal(s.to_frame(name='y'), exp)

        s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x', fill_value=0)
        exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]},
                                 default_fill_value=0)

        tm.assert_sp_frame_equal(s.to_frame(), exp)
        exp = pd.DataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_frame_equal(s.to_frame(name='y').to_dense(), exp) 
Example #6
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_dense_to_sparse(self):
        series = self.bseries.to_dense()
        bseries = series.to_sparse(kind='block')
        iseries = series.to_sparse(kind='integer')
        tm.assert_sp_series_equal(bseries, self.bseries)
        tm.assert_sp_series_equal(iseries, self.iseries, check_names=False)
        assert iseries.name == self.bseries.name

        assert len(series) == len(bseries)
        assert len(series) == len(iseries)
        assert series.shape == bseries.shape
        assert series.shape == iseries.shape

        # non-NaN fill value
        series = self.zbseries.to_dense()
        zbseries = series.to_sparse(kind='block', fill_value=0)
        ziseries = series.to_sparse(kind='integer', fill_value=0)
        tm.assert_sp_series_equal(zbseries, self.zbseries)
        tm.assert_sp_series_equal(ziseries, self.ziseries, check_names=False)
        assert ziseries.name == self.zbseries.name

        assert len(series) == len(zbseries)
        assert len(series) == len(ziseries)
        assert series.shape == zbseries.shape
        assert series.shape == ziseries.shape 
Example #7
Source File: test_series.py    From recruit with Apache License 2.0 6 votes vote down vote up
def test_isna(self):
        # GH 8276
        s = pd.SparseSeries([np.nan, np.nan, 1, 2, np.nan], name='xxx')

        res = s.isna()
        exp = pd.SparseSeries([True, True, False, False, True], name='xxx',
                              fill_value=True)
        tm.assert_sp_series_equal(res, exp)

        # if fill_value is not nan, True can be included in sp_values
        s = pd.SparseSeries([np.nan, 0., 1., 2., 0.], name='xxx',
                            fill_value=0.)
        res = s.isna()
        assert isinstance(res, pd.SparseSeries)
        exp = pd.Series([True, False, False, False, False], name='xxx')
        tm.assert_series_equal(res.to_dense(), exp) 
Example #8
Source File: test_series.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_concat(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        for kind in ['integer', 'block']:
            sparse1 = pd.SparseSeries(val1, name='x', kind=kind)
            sparse2 = pd.SparseSeries(val2, name='y', kind=kind)

            res = pd.concat([sparse1, sparse2])
            exp = pd.concat([pd.Series(val1), pd.Series(val2)])
            exp = pd.SparseSeries(exp, kind=kind)
            tm.assert_sp_series_equal(res, exp)

            sparse1 = pd.SparseSeries(val1, fill_value=0, name='x', kind=kind)
            sparse2 = pd.SparseSeries(val2, fill_value=0, name='y', kind=kind)

            res = pd.concat([sparse1, sparse2])
            exp = pd.concat([pd.Series(val1), pd.Series(val2)])
            exp = pd.SparseSeries(exp, fill_value=0, kind=kind)
            tm.assert_sp_series_equal(res, exp) 
Example #9
Source File: test_series.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_concat_different_kind(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        sparse1 = pd.SparseSeries(val1, name='x', kind='integer')
        sparse2 = pd.SparseSeries(val2, name='y', kind='block', fill_value=0)

        res = pd.concat([sparse1, sparse2])
        exp = pd.concat([pd.Series(val1), pd.Series(val2)])
        exp = pd.SparseSeries(exp, kind='integer')
        tm.assert_sp_series_equal(res, exp)

        res = pd.concat([sparse2, sparse1])
        exp = pd.concat([pd.Series(val2), pd.Series(val1)])
        exp = pd.SparseSeries(exp, kind='block', fill_value=0)
        tm.assert_sp_series_equal(res, exp) 
Example #10
Source File: test_series.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_value_counts_dup(self):
        vals = [1, 2, nan, 0, nan, 1, 2, nan, nan, 1, 2, 0, 1, 1]

        # numeric op may cause sp_values to include the same value as
        # fill_value
        dense = pd.Series(vals, name='xx') / 0.
        sparse = pd.SparseSeries(vals, name='xx') / 0.
        tm.assert_series_equal(sparse.value_counts(),
                               dense.value_counts())
        tm.assert_series_equal(sparse.value_counts(dropna=False),
                               dense.value_counts(dropna=False))

        vals = [1, 2, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 1, 1]

        dense = pd.Series(vals, name='xx') * 0.
        sparse = pd.SparseSeries(vals, name='xx') * 0.
        tm.assert_series_equal(sparse.value_counts(),
                               dense.value_counts())
        tm.assert_series_equal(sparse.value_counts(dropna=False),
                               dense.value_counts(dropna=False)) 
Example #11
Source File: test_series.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_isna(self):
        # GH 8276
        s = pd.SparseSeries([np.nan, np.nan, 1, 2, np.nan], name='xxx')

        res = s.isna()
        exp = pd.SparseSeries([True, True, False, False, True], name='xxx',
                              fill_value=True)
        tm.assert_sp_series_equal(res, exp)

        # if fill_value is not nan, True can be included in sp_values
        s = pd.SparseSeries([np.nan, 0., 1., 2., 0.], name='xxx',
                            fill_value=0.)
        res = s.isna()
        assert isinstance(res, pd.SparseSeries)
        exp = pd.Series([True, False, False, False, False], name='xxx')
        tm.assert_series_equal(res.to_dense(), exp) 
Example #12
Source File: test_series.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def test_notna(self):
        # GH 8276
        s = pd.SparseSeries([np.nan, np.nan, 1, 2, np.nan], name='xxx')

        res = s.notna()
        exp = pd.SparseSeries([False, False, True, True, False], name='xxx',
                              fill_value=False)
        tm.assert_sp_series_equal(res, exp)

        # if fill_value is not nan, True can be included in sp_values
        s = pd.SparseSeries([np.nan, 0., 1., 2., 0.], name='xxx',
                            fill_value=0.)
        res = s.notna()
        assert isinstance(res, pd.SparseSeries)
        exp = pd.Series([False, True, True, True, True], name='xxx')
        tm.assert_series_equal(res.to_dense(), exp) 
Example #13
Source File: test_series.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_to_frame(self):
        # GH 9850
        s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x')
        exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_sp_frame_equal(s.to_frame(), exp)

        exp = pd.SparseDataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_sp_frame_equal(s.to_frame(name='y'), exp)

        s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x', fill_value=0)
        exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]},
                                 default_fill_value=0)

        tm.assert_sp_frame_equal(s.to_frame(), exp)
        exp = pd.DataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_frame_equal(s.to_frame(name='y').to_dense(), exp) 
Example #14
Source File: test_series.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_unary_operators(self, values, op, fill_value):
        # https://github.com/pandas-dev/pandas/issues/22835
        values = np.asarray(values)
        if op is operator.invert:
            new_fill_value = not fill_value
        else:
            new_fill_value = op(fill_value)
        s = SparseSeries(values,
                         fill_value=fill_value,
                         index=['a', 'b', 'c', 'd'],
                         name='name')
        result = op(s)
        expected = SparseSeries(op(values),
                                fill_value=new_fill_value,
                                index=['a', 'b', 'c', 'd'],
                                name='name')
        tm.assert_sp_series_equal(result, expected) 
Example #15
Source File: test_series.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_concat(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        for kind in ['integer', 'block']:
            sparse1 = pd.SparseSeries(val1, name='x', kind=kind)
            sparse2 = pd.SparseSeries(val2, name='y', kind=kind)

            res = pd.concat([sparse1, sparse2])
            exp = pd.concat([pd.Series(val1), pd.Series(val2)])
            exp = pd.SparseSeries(exp, kind=kind)
            tm.assert_sp_series_equal(res, exp)

            sparse1 = pd.SparseSeries(val1, fill_value=0, name='x', kind=kind)
            sparse2 = pd.SparseSeries(val2, fill_value=0, name='y', kind=kind)

            res = pd.concat([sparse1, sparse2])
            exp = pd.concat([pd.Series(val1), pd.Series(val2)])
            exp = pd.SparseSeries(exp, fill_value=0, kind=kind)
            tm.assert_sp_series_equal(res, exp,
                                      consolidate_block_indices=True) 
Example #16
Source File: test_series.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_dense_to_sparse(self):
        series = self.bseries.to_dense()
        bseries = series.to_sparse(kind='block')
        iseries = series.to_sparse(kind='integer')
        tm.assert_sp_series_equal(bseries, self.bseries)
        tm.assert_sp_series_equal(iseries, self.iseries, check_names=False)
        assert iseries.name == self.bseries.name

        assert len(series) == len(bseries)
        assert len(series) == len(iseries)
        assert series.shape == bseries.shape
        assert series.shape == iseries.shape

        # non-NaN fill value
        series = self.zbseries.to_dense()
        zbseries = series.to_sparse(kind='block', fill_value=0)
        ziseries = series.to_sparse(kind='integer', fill_value=0)
        tm.assert_sp_series_equal(zbseries, self.zbseries)
        tm.assert_sp_series_equal(ziseries, self.ziseries, check_names=False)
        assert ziseries.name == self.zbseries.name

        assert len(series) == len(zbseries)
        assert len(series) == len(ziseries)
        assert series.shape == zbseries.shape
        assert series.shape == ziseries.shape 
Example #17
Source File: test_series.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_concat_different_kind(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        sparse1 = pd.SparseSeries(val1, name='x', kind='integer')
        sparse2 = pd.SparseSeries(val2, name='y', kind='block', fill_value=0)

        with tm.assert_produces_warning(PerformanceWarning):
            res = pd.concat([sparse1, sparse2])
        exp = pd.concat([pd.Series(val1), pd.Series(val2)])
        exp = pd.SparseSeries(exp, kind='integer')
        tm.assert_sp_series_equal(res, exp)

        with tm.assert_produces_warning(PerformanceWarning):
            res = pd.concat([sparse2, sparse1])
        exp = pd.concat([pd.Series(val2), pd.Series(val1)])
        exp = pd.SparseSeries(exp, kind='block', fill_value=0)
        tm.assert_sp_series_equal(res, exp) 
Example #18
Source File: test_series.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_value_counts_int(self):
        vals = [1, 2, 0, 1, 2, 1, 2, 0, 1, 1]
        dense = pd.Series(vals, name='xx')

        # fill_value is np.nan, but should not be included in the result
        sparse = pd.SparseSeries(vals, name='xx')
        tm.assert_series_equal(sparse.value_counts(),
                               dense.value_counts())
        tm.assert_series_equal(sparse.value_counts(dropna=False),
                               dense.value_counts(dropna=False))

        sparse = pd.SparseSeries(vals, name='xx', fill_value=0)
        tm.assert_series_equal(sparse.value_counts(),
                               dense.value_counts())
        tm.assert_series_equal(sparse.value_counts(dropna=False),
                               dense.value_counts(dropna=False)) 
Example #19
Source File: test_series.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_isna(self):
        # GH 8276
        s = pd.SparseSeries([np.nan, np.nan, 1, 2, np.nan], name='xxx')

        res = s.isna()
        exp = pd.SparseSeries([True, True, False, False, True], name='xxx',
                              fill_value=True)
        tm.assert_sp_series_equal(res, exp)

        # if fill_value is not nan, True can be included in sp_values
        s = pd.SparseSeries([np.nan, 0., 1., 2., 0.], name='xxx',
                            fill_value=0.)
        res = s.isna()
        assert isinstance(res, pd.SparseSeries)
        exp = pd.Series([True, False, False, False, False], name='xxx')
        tm.assert_series_equal(res.to_dense(), exp) 
Example #20
Source File: test_series.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def test_notna(self):
        # GH 8276
        s = pd.SparseSeries([np.nan, np.nan, 1, 2, np.nan], name='xxx')

        res = s.notna()
        exp = pd.SparseSeries([False, False, True, True, False], name='xxx',
                              fill_value=False)
        tm.assert_sp_series_equal(res, exp)

        # if fill_value is not nan, True can be included in sp_values
        s = pd.SparseSeries([np.nan, 0., 1., 2., 0.], name='xxx',
                            fill_value=0.)
        res = s.notna()
        assert isinstance(res, pd.SparseSeries)
        exp = pd.Series([False, True, True, True, True], name='xxx')
        tm.assert_series_equal(res.to_dense(), exp) 
Example #21
Source File: test_series.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def test_sparse_to_dense(self):
        arr, index = _test_data1()
        series = self.bseries.to_dense()
        tm.assert_series_equal(series, Series(arr, name='bseries'))

        # see gh-14647
        with tm.assert_produces_warning(FutureWarning,
                                        check_stacklevel=False):
            series = self.bseries.to_dense(sparse_only=True)

        indexer = np.isfinite(arr)
        exp = Series(arr[indexer], index=index[indexer], name='bseries')
        tm.assert_series_equal(series, exp)

        series = self.iseries.to_dense()
        tm.assert_series_equal(series, Series(arr, name='iseries'))

        arr, index = _test_data1_zero()
        series = self.zbseries.to_dense()
        tm.assert_series_equal(series, Series(arr, name='zbseries'))

        series = self.ziseries.to_dense()
        tm.assert_series_equal(series, Series(arr)) 
Example #22
Source File: test_series.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def test_dense_to_sparse(self):
        series = self.bseries.to_dense()
        bseries = series.to_sparse(kind='block')
        iseries = series.to_sparse(kind='integer')
        tm.assert_sp_series_equal(bseries, self.bseries)
        tm.assert_sp_series_equal(iseries, self.iseries, check_names=False)
        assert iseries.name == self.bseries.name

        assert len(series) == len(bseries)
        assert len(series) == len(iseries)
        assert series.shape == bseries.shape
        assert series.shape == iseries.shape

        # non-NaN fill value
        series = self.zbseries.to_dense()
        zbseries = series.to_sparse(kind='block', fill_value=0)
        ziseries = series.to_sparse(kind='integer', fill_value=0)
        tm.assert_sp_series_equal(zbseries, self.zbseries)
        tm.assert_sp_series_equal(ziseries, self.ziseries, check_names=False)
        assert ziseries.name == self.zbseries.name

        assert len(series) == len(zbseries)
        assert len(series) == len(ziseries)
        assert series.shape == zbseries.shape
        assert series.shape == ziseries.shape 
Example #23
Source File: test_series.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def test_to_frame(self):
        # GH 9850
        s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x')
        exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_sp_frame_equal(s.to_frame(), exp)

        exp = pd.SparseDataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_sp_frame_equal(s.to_frame(name='y'), exp)

        s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x', fill_value=0)
        exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]},
                                 default_fill_value=0)

        tm.assert_sp_frame_equal(s.to_frame(), exp)
        exp = pd.DataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_frame_equal(s.to_frame(name='y').to_dense(), exp) 
Example #24
Source File: test_series.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def test_concat(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        for kind in ['integer', 'block']:
            sparse1 = pd.SparseSeries(val1, name='x', kind=kind)
            sparse2 = pd.SparseSeries(val2, name='y', kind=kind)

            res = pd.concat([sparse1, sparse2])
            exp = pd.concat([pd.Series(val1), pd.Series(val2)])
            exp = pd.SparseSeries(exp, kind=kind)
            tm.assert_sp_series_equal(res, exp)

            sparse1 = pd.SparseSeries(val1, fill_value=0, name='x', kind=kind)
            sparse2 = pd.SparseSeries(val2, fill_value=0, name='y', kind=kind)

            res = pd.concat([sparse1, sparse2])
            exp = pd.concat([pd.Series(val1), pd.Series(val2)])
            exp = pd.SparseSeries(exp, fill_value=0, kind=kind)
            tm.assert_sp_series_equal(res, exp) 
Example #25
Source File: test_series.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def test_concat_different_kind(self):
        val1 = np.array([1, 2, np.nan, np.nan, 0, np.nan])
        val2 = np.array([3, np.nan, 4, 0, 0])

        sparse1 = pd.SparseSeries(val1, name='x', kind='integer')
        sparse2 = pd.SparseSeries(val2, name='y', kind='block', fill_value=0)

        res = pd.concat([sparse1, sparse2])
        exp = pd.concat([pd.Series(val1), pd.Series(val2)])
        exp = pd.SparseSeries(exp, kind='integer')
        tm.assert_sp_series_equal(res, exp)

        res = pd.concat([sparse2, sparse1])
        exp = pd.concat([pd.Series(val2), pd.Series(val1)])
        exp = pd.SparseSeries(exp, kind='block', fill_value=0)
        tm.assert_sp_series_equal(res, exp) 
Example #26
Source File: test_series.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def test_value_counts_dup(self):
        vals = [1, 2, nan, 0, nan, 1, 2, nan, nan, 1, 2, 0, 1, 1]

        # numeric op may cause sp_values to include the same value as
        # fill_value
        dense = pd.Series(vals, name='xx') / 0.
        sparse = pd.SparseSeries(vals, name='xx') / 0.
        tm.assert_series_equal(sparse.value_counts(),
                               dense.value_counts())
        tm.assert_series_equal(sparse.value_counts(dropna=False),
                               dense.value_counts(dropna=False))

        vals = [1, 2, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 1, 1]

        dense = pd.Series(vals, name='xx') * 0.
        sparse = pd.SparseSeries(vals, name='xx') * 0.
        tm.assert_series_equal(sparse.value_counts(),
                               dense.value_counts())
        tm.assert_series_equal(sparse.value_counts(dropna=False),
                               dense.value_counts(dropna=False)) 
Example #27
Source File: test_series.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def test_isna(self):
        # GH 8276
        s = pd.SparseSeries([np.nan, np.nan, 1, 2, np.nan], name='xxx')

        res = s.isna()
        exp = pd.SparseSeries([True, True, False, False, True], name='xxx',
                              fill_value=True)
        tm.assert_sp_series_equal(res, exp)

        # if fill_value is not nan, True can be included in sp_values
        s = pd.SparseSeries([np.nan, 0., 1., 2., 0.], name='xxx',
                            fill_value=0.)
        res = s.isna()
        assert isinstance(res, pd.SparseSeries)
        exp = pd.Series([True, False, False, False, False], name='xxx')
        tm.assert_series_equal(res.to_dense(), exp) 
Example #28
Source File: test_series.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def test_notna(self):
        # GH 8276
        s = pd.SparseSeries([np.nan, np.nan, 1, 2, np.nan], name='xxx')

        res = s.notna()
        exp = pd.SparseSeries([False, False, True, True, False], name='xxx',
                              fill_value=False)
        tm.assert_sp_series_equal(res, exp)

        # if fill_value is not nan, True can be included in sp_values
        s = pd.SparseSeries([np.nan, 0., 1., 2., 0.], name='xxx',
                            fill_value=0.)
        res = s.notna()
        assert isinstance(res, pd.SparseSeries)
        exp = pd.Series([False, True, True, True, True], name='xxx')
        tm.assert_series_equal(res.to_dense(), exp) 
Example #29
Source File: test_series.py    From coffeegrindsize with MIT License 6 votes vote down vote up
def test_dense_to_sparse(self):
        series = self.bseries.to_dense()
        bseries = series.to_sparse(kind='block')
        iseries = series.to_sparse(kind='integer')
        tm.assert_sp_series_equal(bseries, self.bseries)
        tm.assert_sp_series_equal(iseries, self.iseries, check_names=False)
        assert iseries.name == self.bseries.name

        assert len(series) == len(bseries)
        assert len(series) == len(iseries)
        assert series.shape == bseries.shape
        assert series.shape == iseries.shape

        # non-NaN fill value
        series = self.zbseries.to_dense()
        zbseries = series.to_sparse(kind='block', fill_value=0)
        ziseries = series.to_sparse(kind='integer', fill_value=0)
        tm.assert_sp_series_equal(zbseries, self.zbseries)
        tm.assert_sp_series_equal(ziseries, self.ziseries, check_names=False)
        assert ziseries.name == self.zbseries.name

        assert len(series) == len(zbseries)
        assert len(series) == len(ziseries)
        assert series.shape == zbseries.shape
        assert series.shape == ziseries.shape 
Example #30
Source File: test_series.py    From coffeegrindsize with MIT License 6 votes vote down vote up
def test_to_frame(self):
        # GH 9850
        s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x')
        exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_sp_frame_equal(s.to_frame(), exp)

        exp = pd.SparseDataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_sp_frame_equal(s.to_frame(name='y'), exp)

        s = pd.SparseSeries([1, 2, 0, nan, 4, nan, 0], name='x', fill_value=0)
        exp = pd.SparseDataFrame({'x': [1, 2, 0, nan, 4, nan, 0]},
                                 default_fill_value=0)

        tm.assert_sp_frame_equal(s.to_frame(), exp)
        exp = pd.DataFrame({'y': [1, 2, 0, nan, 4, nan, 0]})
        tm.assert_frame_equal(s.to_frame(name='y').to_dense(), exp)