Python data_utils.load_data() Examples

The following are 6 code examples of data_utils.load_data(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module data_utils , or try the search function .
Example #1
Source File: task.py    From cloudml-samples with Apache License 2.0 6 votes vote down vote up
def train_model(args):
    """Load the data, train the model, test the model, export / save the model
    """
    torch.manual_seed(args.seed)

    # Open our dataset
    train_loader, test_loader = data_utils.load_data(args.test_split,
                                                     args.batch_size)

    # Create the model
    net = model.SonarDNN().double()
    optimizer = optim.SGD(net.parameters(), lr=args.lr,
                          momentum=args.momentum, nesterov=False)

    # Train / Test the model
    for epoch in range(1, args.epochs + 1):
        train(net, train_loader, optimizer, epoch)
        test(net, test_loader)

    # Export the trained model
    torch.save(net.state_dict(), args.model_name)

    if args.model_dir:
        # Save the model to GCS
        data_utils.save_model(args.model_dir, args.model_name) 
Example #2
Source File: task.py    From cloudml-samples with Apache License 2.0 6 votes vote down vote up
def train_model(args):
    train_features, test_features, train_labels, test_labels = \
        data_utils.load_data(args)

    sonar_model = model.sonar_model()

    sonar_model.fit(train_features, train_labels, epochs=args.epochs,
                    batch_size=args.batch_size)

    score = sonar_model.evaluate(test_features, test_labels,
                                 batch_size=args.batch_size)
    print(score)

    # Export the trained model
    sonar_model.save(args.model_name)

    if args.model_dir:
        # Save the model to GCS
        data_utils.save_model(args.model_dir, args.model_name) 
Example #3
Source File: task.py    From cloudml-samples with Apache License 2.0 5 votes vote down vote up
def train_model(args):
    """Load the data, train the model, test the model, export / save the model
    """
    torch.manual_seed(args.seed)

    # Open our dataset
    train_loader, test_loader = data_utils.load_data(
        args.test_split, args.seed, args.batch_size)

    # Create the model
    net = model.SonarDNN().double()
    optimizer = optim.SGD(net.parameters(), lr=args.lr,
                          momentum=args.momentum, nesterov=False)

    # Train / Test the model
    latest_accuracy = 0.0
    for epoch in range(1, args.epochs + 1):
        train(net, train_loader, optimizer)
        latest_accuracy = test(net, test_loader)

    # The default name of the metric is training/hptuning/metric.
    # We recommend that you assign a custom name. The only functional
    # difference is that if you use a custom name, you must set the
    # hyperparameterMetricTag value in the HyperparameterSpec object in your
    # job request to match your chosen name.
    # https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#HyperparameterSpec
    hpt = hypertune.HyperTune()
    hpt.report_hyperparameter_tuning_metric(
        hyperparameter_metric_tag='my_accuracy_tag',
        metric_value=latest_accuracy,
        global_step=args.epochs)

    # Export the trained model
    torch.save(net.state_dict(), args.model_name)

    if args.job_dir:
        # Save the model to GCS
        data_utils.save_model(args.job_dir, args.model_name)
    else:
        print('Accuracy: {:.0f}%'.format(latest_accuracy)) 
Example #4
Source File: DataLoader.py    From Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics with MIT License 4 votes vote down vote up
def read_all_data( self, actions, data_dir, one_hot=False):
        """
        Loads data for training/testing and normalizes it.
        
        Args
        actions: list of strings (actions) to load
        seq_length_in: number of frames to use in the burn-in sequence
        seq_length_out: number of frames to use in the output sequence
        data_dir: directory to load the data from
        one_hot: whether to use one-hot encoding per action
        Returns
        train_set: dictionary with normalized training data
        test_set: dictionary with test data
        data_mean: d-long vector with the mean of the training data
        data_std: d-long vector with the standard dev of the training data
        dim_to_ignore: dimensions that are not used becaused stdev is too small
        dim_to_use: dimensions that we are actually using in the model
        """


        train_subject_ids = [1,6,7,8,9,11]
        test_subject_ids = [5]

        train_set, complete_train = data_utils.load_data( data_dir, train_subject_ids, actions, one_hot )
        test_set,  complete_test  = data_utils.load_data( data_dir, test_subject_ids,  actions, one_hot )

        # Compute normalization stats
        data_mean, data_std,  dim_to_ignore, dim_to_use = data_utils.normalization_stats(complete_train)

        # Normalize -- subtract mean, divide by stdev
        train_set = data_utils.normalize_data( train_set, data_mean, data_std, dim_to_use, actions, one_hot )
        test_set  = data_utils.normalize_data( test_set,  data_mean, data_std, dim_to_use, actions, one_hot )
        print("done reading data.")

        self.train_set = train_set
        self.test_set = test_set

        self.data_mean = data_mean
        self.data_std = data_std

        self.dim_to_ignore = dim_to_ignore
        self.dim_to_use = dim_to_use

        self.train_keys = list(self.train_set.keys()) 
Example #5
Source File: trainDepthMap.py    From Pix2Depth with GNU General Public License v3.0 4 votes vote down vote up
def trainDepthMap(**kwargs):
    """
    Train model

    Load the whole train data in memory for faster operations

    args: **kwargs (dict) keyword arguments that specify the model hyperparameters
    """

    # Roll out the parameters
    batch_size = kwargs["batch_size"]
    nb_train_samples = kwargs["nb_train_samples"]
    nb_validation_samples = kwargs["nb_validation_samples"]
    epochs = kwargs["nb_epoch"]
    model_name = kwargs["model_name"]
    lastLayerActivation=kwargs["lastLayerActivation"]
    PercentageOfTrianable=kwargs["PercentageOfTrianable"]
    SpecificPathStr=kwargs["SpecificPathStr"]
    lossFunction=kwargs["lossFunction"]
    if(kwargs["bnAtTheend"]!="True"):
         bnAtTheend=False
    else:
         bnAtTheend=True
    # Setup environment (logging directory etc)
    #general_utils.setup_logging(model_name)

    # Load and rescale data
    #X_full_train, X_sketch_train, X_full_val, X_sketch_val = data_utils.load_data(dset, image_data_format)
    img_dim = (256,256,3) # Manual entry

 

    try:
         print("Ok before directory this point")
         generator_model=CreatErrorMapModel(input_shape=img_dim,lastLayerActivation=lastLayerActivation, PercentageOfTrianable=PercentageOfTrianable, bnAtTheend=bnAtTheend,lossFunction=lossFunction)
         print("Ok before directory this point")
#-------------------------------------------------------------------------------
         logpath=os.path.join('../../log','DepthMapWith'+lastLayerActivation+str(PercentageOfTrianable)+'UnTr'+SpecificPathStr)
         modelPath=os.path.join('../../models','DepthMapwith'+lastLayerActivation+str(PercentageOfTrianable)+'Untr'+SpecificPathStr)
         shutil.rmtree(logpath, ignore_errors=True)
         shutil.rmtree(modelPath, ignore_errors=True)
         os.makedirs(logpath, exist_ok=True)
         os.makedirs(modelPath, exist_ok=True)
         print("Ok until this point")

#-----------------------PreTraining Depth Map-------------------------------------
         batchSize=batch_size
         history=generator_model.fit_generator(data_utils.facades_generator(img_dim,batch_size=batch_size), samples_per_epoch=nb_train_samples,epochs=epochs,verbose=1,validation_data=data_utils.facades_generator(img_dim,batch_size=batch_size),nb_val_samples=nb_validation_samples,callbacks=[
         keras.callbacks.ModelCheckpoint(os.path.join(modelPath,'DepthMap_weightsBestLoss.h5'), monitor='val_loss', verbose=1, save_best_only=True),
         keras.callbacks.ModelCheckpoint(os.path.join(modelPath,'DepthMap_weightsBestAcc.h5'), monitor='acc', verbose=1, save_best_only=True),
         keras.callbacks.ReduceLROnPlateau(monitor='loss', factor=0.1, patience=2, verbose=1, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0),
         keras.callbacks.TensorBoard(log_dir=logpath, histogram_freq=0, batch_size=batchSize, write_graph=True, write_grads=False, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)],)
         ErrorMap_weights_path = os.path.join(modelPath,'DepthMap_weights.h5' )
         generator_model.save_weights(ErrorMap_weights_path, overwrite=True)
         plt.plot(history.history['loss'])
         plt.savefig(logpath+"/history.png",bbox_inches='tight')
#------------------------------------------------------------------------------------
    except KeyboardInterrupt:
        pass 
Example #6
Source File: prepro_std.py    From mt-dnn with MIT License 4 votes vote down vote up
def main(args):
    # hyper param
    do_lower_case = args.do_lower_case
    root = args.root_dir
    assert os.path.exists(root)

    literal_model_type = args.model.split('-')[0].upper()
    encoder_model = EncoderModelType[literal_model_type]
    literal_model_type = literal_model_type.lower()
    mt_dnn_suffix = literal_model_type
    if 'base' in args.model:
        mt_dnn_suffix += "_base"
    elif 'large' in args.model:
        mt_dnn_suffix += "_large"

    config_class, model_class, tokenizer_class = MODEL_CLASSES[literal_model_type]
    tokenizer = tokenizer_class.from_pretrained(args.model, do_lower_case=do_lower_case)

    if 'uncased' in args.model:
        mt_dnn_suffix = '{}_uncased'.format(mt_dnn_suffix)
    else:
        mt_dnn_suffix = '{}_cased'.format(mt_dnn_suffix)

    if do_lower_case:
        mt_dnn_suffix = '{}_lower'.format(mt_dnn_suffix)

    mt_dnn_root = os.path.join(root, mt_dnn_suffix)
    if not os.path.isdir(mt_dnn_root):
        os.mkdir(mt_dnn_root)

    task_defs = TaskDefs(args.task_def)

    for task in task_defs.get_task_names():
        task_def = task_defs.get_task_def(task)
        logger.info("Task %s" % task)
        for split_name in task_def.split_names:
            file_path = os.path.join(root, "%s_%s.tsv" % (task, split_name))
            if not os.path.exists(file_path):
                logger.warning("File %s doesnot exit")
                sys.exit(1)
            rows = load_data(file_path, task_def)
            dump_path = os.path.join(mt_dnn_root, "%s_%s.json" % (task, split_name))
            logger.info(dump_path)
            build_data(
                rows,
                dump_path,
                tokenizer,
                task_def.data_type,
                encoderModelType=encoder_model,
                lab_dict=task_def.label_vocab)