Python data_utils.add_special_words() Examples
The following are 12
code examples of data_utils.add_special_words().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
data_utils
, or try the search function
.
Example #1
Source File: neural_programmer.py From DOTA_models with Apache License 2.0 | 5 votes |
def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print "# train examples ", len(train_data) print "# dev examples ", len(dev_data) print "# test examples ", len(test_data) print "running open source" #construct TF graph and train or evaluate master(train_data, dev_data, utility)
Example #2
Source File: neural_programmer.py From yolo_v2 with Apache License 2.0 | 5 votes |
def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print "# train examples ", len(train_data) print "# dev examples ", len(dev_data) print "# test examples ", len(test_data) print "running open source" #construct TF graph and train or evaluate master(train_data, dev_data, utility)
Example #3
Source File: neural_programmer.py From Gun-Detector with Apache License 2.0 | 5 votes |
def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print("# train examples ", len(train_data)) print("# dev examples ", len(dev_data)) print("# test examples ", len(test_data)) print("running open source") #construct TF graph and train or evaluate master(train_data, dev_data, utility)
Example #4
Source File: neural_programmer.py From Action_Recognition_Zoo with MIT License | 5 votes |
def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print "# train examples ", len(train_data) print "# dev examples ", len(dev_data) print "# test examples ", len(test_data) print "running open source" #construct TF graph and train or evaluate master(train_data, dev_data, utility)
Example #5
Source File: neural_programmer.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print "# train examples ", len(train_data) print "# dev examples ", len(dev_data) print "# test examples ", len(test_data) print "running open source" #construct TF graph and train or evaluate master(train_data, dev_data, utility)
Example #6
Source File: neural_programmer.py From hands-detection with MIT License | 5 votes |
def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print "# train examples ", len(train_data) print "# dev examples ", len(dev_data) print "# test examples ", len(test_data) print "running open source" #construct TF graph and train or evaluate master(train_data, dev_data, utility)
Example #7
Source File: neural_programmer.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print "# train examples ", len(train_data) print "# dev examples ", len(dev_data) print "# test examples ", len(test_data) print "running open source" #construct TF graph and train or evaluate master(train_data, dev_data, utility)
Example #8
Source File: neural_programmer.py From object_detection_with_tensorflow with MIT License | 5 votes |
def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print "# train examples ", len(train_data) print "# dev examples ", len(dev_data) print "# test examples ", len(test_data) print "running open source" #construct TF graph and train or evaluate master(train_data, dev_data, utility)
Example #9
Source File: neural_programmer.py From HumanRecognition with MIT License | 5 votes |
def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print "# train examples ", len(train_data) print "# dev examples ", len(dev_data) print "# test examples ", len(test_data) print "running open source" #construct TF graph and train or evaluate master(train_data, dev_data, utility)
Example #10
Source File: neural_programmer.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print("# train examples ", len(train_data)) print("# dev examples ", len(dev_data)) print("# test examples ", len(test_data)) print("running open source") #construct TF graph and train or evaluate master(train_data, dev_data, utility)
Example #11
Source File: neural_programmer.py From models with Apache License 2.0 | 5 votes |
def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print("# train examples ", len(train_data)) print("# dev examples ", len(dev_data)) print("# test examples ", len(test_data)) print("running open source") #construct TF graph and train or evaluate master(train_data, dev_data, utility)
Example #12
Source File: neural_programmer.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def main(args): utility = Utility() train_name = "random-split-1-train.examples" dev_name = "random-split-1-dev.examples" test_name = "pristine-unseen-tables.examples" #load data dat = wiki_data.WikiQuestionGenerator(train_name, dev_name, test_name, FLAGS.data_dir) train_data, dev_data, test_data = dat.load() utility.words = [] utility.word_ids = {} utility.reverse_word_ids = {} #construct vocabulary data_utils.construct_vocab(train_data, utility) data_utils.construct_vocab(dev_data, utility, True) data_utils.construct_vocab(test_data, utility, True) data_utils.add_special_words(utility) data_utils.perform_word_cutoff(utility) #convert data to int format and pad the inputs train_data = data_utils.complete_wiki_processing(train_data, utility, True) dev_data = data_utils.complete_wiki_processing(dev_data, utility, False) test_data = data_utils.complete_wiki_processing(test_data, utility, False) print("# train examples ", len(train_data)) print("# dev examples ", len(dev_data)) print("# test examples ", len(test_data)) print("running open source") #construct TF graph and train or evaluate master(train_data, dev_data, utility)