Python data_utils.generate_feed_dict() Examples
The following are 24
code examples of data_utils.generate_feed_dict().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
data_utils
, or try the search function
.
Example #1
Source File: neural_programmer.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print "dev set accuracy after ", i, " : ", gc / num_examples print num_examples, len(data) print "--------"
Example #2
Source File: neural_programmer.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print("step ", i, " ", time_taken, " seconds ") start = end print(" printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle) train_set_loss = 0.0
Example #3
Source File: neural_programmer.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print("dev set accuracy after ", i, " : ", gc / num_examples) print(num_examples, len(data)) print("--------")
Example #4
Source File: neural_programmer.py From models with Apache License 2.0 | 5 votes |
def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print("step ", i, " ", time_taken, " seconds ") start = end print(" printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle) train_set_loss = 0.0
Example #5
Source File: neural_programmer.py From models with Apache License 2.0 | 5 votes |
def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print("dev set accuracy after ", i, " : ", gc / num_examples) print(num_examples, len(data)) print("--------")
Example #6
Source File: neural_programmer.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print("step ", i, " ", time_taken, " seconds ") start = end print(" printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle) train_set_loss = 0.0
Example #7
Source File: neural_programmer.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print("dev set accuracy after ", i, " : ", gc / num_examples) print(num_examples, len(data)) print("--------")
Example #8
Source File: neural_programmer.py From HumanRecognition with MIT License | 5 votes |
def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print "step ", i, " ", time_taken, " seconds " start = end print " printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle train_set_loss = 0.0
Example #9
Source File: neural_programmer.py From HumanRecognition with MIT License | 5 votes |
def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print "dev set accuracy after ", i, " : ", gc / num_examples print num_examples, len(data) print "--------"
Example #10
Source File: neural_programmer.py From object_detection_with_tensorflow with MIT License | 5 votes |
def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print "step ", i, " ", time_taken, " seconds " start = end print " printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle train_set_loss = 0.0
Example #11
Source File: neural_programmer.py From object_detection_with_tensorflow with MIT License | 5 votes |
def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print "dev set accuracy after ", i, " : ", gc / num_examples print num_examples, len(data) print "--------"
Example #12
Source File: neural_programmer.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print "step ", i, " ", time_taken, " seconds " start = end print " printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle train_set_loss = 0.0
Example #13
Source File: neural_programmer.py From DOTA_models with Apache License 2.0 | 5 votes |
def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print "dev set accuracy after ", i, " : ", gc / num_examples print num_examples, len(data) print "--------"
Example #14
Source File: neural_programmer.py From hands-detection with MIT License | 5 votes |
def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print "step ", i, " ", time_taken, " seconds " start = end print " printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle train_set_loss = 0.0
Example #15
Source File: neural_programmer.py From hands-detection with MIT License | 5 votes |
def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print "dev set accuracy after ", i, " : ", gc / num_examples print num_examples, len(data) print "--------"
Example #16
Source File: neural_programmer.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print "step ", i, " ", time_taken, " seconds " start = end print " printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle train_set_loss = 0.0
Example #17
Source File: neural_programmer.py From ECO-pytorch with BSD 2-Clause "Simplified" License | 5 votes |
def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print "dev set accuracy after ", i, " : ", gc / num_examples print num_examples, len(data) print "--------"
Example #18
Source File: neural_programmer.py From Action_Recognition_Zoo with MIT License | 5 votes |
def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print "step ", i, " ", time_taken, " seconds " start = end print " printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle train_set_loss = 0.0
Example #19
Source File: neural_programmer.py From Action_Recognition_Zoo with MIT License | 5 votes |
def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print "dev set accuracy after ", i, " : ", gc / num_examples print num_examples, len(data) print "--------"
Example #20
Source File: neural_programmer.py From Gun-Detector with Apache License 2.0 | 5 votes |
def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print("step ", i, " ", time_taken, " seconds ") start = end print(" printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle) train_set_loss = 0.0
Example #21
Source File: neural_programmer.py From Gun-Detector with Apache License 2.0 | 5 votes |
def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print("dev set accuracy after ", i, " : ", gc / num_examples) print(num_examples, len(data)) print("--------")
Example #22
Source File: neural_programmer.py From yolo_v2 with Apache License 2.0 | 5 votes |
def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print "step ", i, " ", time_taken, " seconds " start = end print " printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle train_set_loss = 0.0
Example #23
Source File: neural_programmer.py From yolo_v2 with Apache License 2.0 | 5 votes |
def evaluate(sess, data, batch_size, graph, i): #computes accuracy num_examples = 0.0 gc = 0.0 for j in range(0, len(data) - batch_size + 1, batch_size): [ct] = sess.run([graph.final_correct], feed_dict=data_utils.generate_feed_dict(data, j, batch_size, graph)) gc += ct * batch_size num_examples += batch_size print "dev set accuracy after ", i, " : ", gc / num_examples print num_examples, len(data) print "--------"
Example #24
Source File: neural_programmer.py From DOTA_models with Apache License 2.0 | 5 votes |
def Train(graph, utility, batch_size, train_data, sess, model_dir, saver): #performs training curr = 0 train_set_loss = 0.0 utility.random.shuffle(train_data) start = time.time() for i in range(utility.FLAGS.train_steps): curr_step = i if (i > 0 and i % FLAGS.write_every == 0): model_file = model_dir + "/model_" + str(i) saver.save(sess, model_file) if curr + batch_size >= len(train_data): curr = 0 utility.random.shuffle(train_data) step, cost_value = sess.run( [graph.step, graph.total_cost], feed_dict=data_utils.generate_feed_dict( train_data, curr, batch_size, graph, train=True, utility=utility)) curr = curr + batch_size train_set_loss += cost_value if (i > 0 and i % FLAGS.eval_cycle == 0): end = time.time() time_taken = end - start print "step ", i, " ", time_taken, " seconds " start = end print " printing train set loss: ", train_set_loss / utility.FLAGS.eval_cycle train_set_loss = 0.0