Python transforms.Normalize() Examples
The following are 3
code examples of transforms.Normalize().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
transforms
, or try the search function
.
Example #1
Source File: train_img_model_xent.py From ReXCam with MIT License | 6 votes |
def read_image(img_path): """Keep reading image until succeed. This can avoid IOError incurred by heavy IO process.""" got_img = False if not osp.exists(img_path): raise IOError("{} does not exist".format(img_path)) while not got_img: try: img = Image.open(img_path).convert('RGB') got_img = True except IOError: print("IOError incurred when reading '{}'. Will redo. Don't worry. Just chill.".format(img_path)) pass transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) img = transform_test(img) return img
Example #2
Source File: train.py From deconvolution with GNU General Public License v3.0 | 6 votes |
def get_transform(mode,base_size): #base_size = 520 #crop_size = 480 crop_size=int(480*base_size/520) min_size = int((0.5 if mode=='train' else 1.0) * base_size) max_size = int((2.0 if mode=='train' else 1.0) * base_size) transforms = [] transforms.append(T.RandomResize(min_size, max_size)) if mode=='train': transforms.append(T.RandomHorizontalFlip(0.5)) transforms.append(T.RandomCrop(crop_size)) transforms.append(T.ToTensor()) transforms.append(T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])) return T.Compose(transforms)
Example #3
Source File: datasets.py From pytorch-center-loss with MIT License | 6 votes |
def __init__(self, batch_size, use_gpu, num_workers): transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) pin_memory = True if use_gpu else False trainset = torchvision.datasets.MNIST(root='./data/mnist', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader( trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=pin_memory, ) testset = torchvision.datasets.MNIST(root='./data/mnist', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader( testset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=pin_memory, ) self.trainloader = trainloader self.testloader = testloader self.num_classes = 10