Python keras.models.clone_model() Examples
The following are 7
code examples of keras.models.clone_model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.models
, or try the search function
.
Example #1
Source File: utils.py From mpi_learn with GNU General Public License v3.0 | 6 votes |
def load_model(filename=None, model=None, weights_file=None, custom_objects={}): """Loads model architecture from JSON and instantiates the model. filename: path to JSON file specifying model architecture model: (or) a Keras model to be cloned weights_file: path to HDF5 file containing model weights custom_objects: A Dictionary of custom classes used in the model keyed by name""" import_keras() from keras.models import model_from_json, clone_model if filename is not None: with open( filename ) as arch_f: json_str = arch_f.readline() new_model = model_from_json( json_str, custom_objects=custom_objects) if model is not None: new_model = clone_model(model) if weights_file is not None: new_model.load_weights( weights_file ) return new_model
Example #2
Source File: models.py From delft with Apache License 2.0 | 5 votes |
def clone_model(self): model_copy = clone_model(self.model) model_copy.set_weights(self.model.get_weights()) return model_copy
Example #3
Source File: MCRecRecommenderWrapper.py From RecSys2019_DeepLearning_Evaluation with GNU Affero General Public License v3.0 | 5 votes |
def fit(self, latent_dim = 128, reg_latent = 0, layers = [512, 256, 128, 64], reg_layes = [0 ,0, 0, 0], learning_rate = 0.001, epochs = 30, batch_size = 256, num_negatives = 4, **earlystopping_kwargs): self.latent_dim = latent_dim self.reg_latent = reg_latent self.layers = layers self.reg_layes = reg_layes self.learning_rate = learning_rate self.epochs = epochs self.batch_size = batch_size self.num_negatives = num_negatives self._init_model() self._best_model = clone_model(self.model) self._best_model.set_weights(self.model.get_weights()) self._train_with_early_stopping(epochs, algorithm_name = self.RECOMMENDER_NAME, **earlystopping_kwargs) print("MCRec_RecommenderWrapper: Tranining complete") self.model = clone_model(self._best_model) self.model.set_weights(self._best_model.get_weights())
Example #4
Source File: MCRecRecommenderWrapper.py From RecSys2019_DeepLearning_Evaluation with GNU Affero General Public License v3.0 | 5 votes |
def _update_best_model(self): # Keras only clones the structure of the model, not the weights self._best_model = clone_model(self.model) self._best_model.set_weights(self.model.get_weights())
Example #5
Source File: NeuMF_RecommenderWrapper.py From RecSys2019_DeepLearning_Evaluation with GNU Affero General Public License v3.0 | 5 votes |
def deep_clone_model(source_model): destination_model = clone_model(source_model) destination_model.set_weights(source_model.get_weights()) return destination_model
Example #6
Source File: sigma_est.py From FC-AIDE-Keras with MIT License | 5 votes |
def get_model(self): model = clone_model(self.model_copy) model.load_weights('./weights/sigma_estimation_model.hdf5') adam=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0) model.compile(loss=fine_tuning_loss, optimizer=adam) return model
Example #7
Source File: qrnn.py From typhon with MIT License | 4 votes |
def __init__(self, input_dim, quantiles, depth=3, width=128, activation="relu", ensemble_size=1, **kwargs): """ Create a QRNN model. Arguments: input_dim(int): The dimension of the measurement space, i.e. the number of elements in a single measurement vector y quantiles(np.array): 1D-array containing the quantiles to estimate of the posterior distribution. Given as fractions within the range [0, 1]. depth(int): The number of hidden layers in the neural network to use for the regression. Default is 3, i.e. three hidden plus input and output layer. width(int): The number of neurons in each hidden layer. activation(str): The name of the activation functions to use. Default is "relu", for rectified linear unit. See `this <https://keras.io/activations>`_ link for available functions. **kwargs: Additional keyword arguments are passed to the constructor call `keras.layers.Dense` of the hidden layers, which can for example be used to add regularization. For more info consult `Keras documentation. <https://keras.io/layers/core/#dense>`_ """ self.input_dim = input_dim self.quantiles = np.array(quantiles) self.depth = depth self.width = width self.activation = activation model = Sequential() if depth == 0: model.add(Dense(input_dim=input_dim, units=len(quantiles), activation=None)) else: model.add(Dense(input_dim=input_dim, units=width, activation=activation)) for i in range(depth - 2): model.add(Dense(units=width, activation=activation, **kwargs)) model.add(Dense(units=len(quantiles), activation=None)) self.models = [clone_model(model) for i in range(ensemble_size)]