Python tensorflow.python.pywrap_tensorflow.TF_GetOpList() Examples
The following are 5
code examples of tensorflow.python.pywrap_tensorflow.TF_GetOpList().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.pywrap_tensorflow
, or try the search function
.
Example #1
Source File: load_library.py From lambda-packs with MIT License | 4 votes |
def load_op_library(library_filename): """Loads a TensorFlow plugin, containing custom ops and kernels. Pass "library_filename" to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. When the library is loaded, ops and kernels registered in the library via the `REGISTER_*` macros are made available in the TensorFlow process. Note that ops with the same name as an existing op are rejected and not registered with the process. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: A python module containing the Python wrappers for Ops defined in the plugin. Raises: RuntimeError: when unable to load the library or get the python wrappers. """ status = py_tf.TF_NewStatus() lib_handle = py_tf.TF_LoadLibrary(library_filename, status) try: error_code = py_tf.TF_GetCode(status) if error_code != 0: error_msg = compat.as_text(py_tf.TF_Message(status)) # pylint: disable=protected-access raise errors_impl._make_specific_exception( None, None, error_msg, error_code) # pylint: enable=protected-access finally: py_tf.TF_DeleteStatus(status) op_list_str = py_tf.TF_GetOpList(lib_handle) op_list = op_def_pb2.OpList() op_list.ParseFromString(compat.as_bytes(op_list_str)) wrappers = py_tf.GetPythonWrappers(op_list_str) # Delete the library handle to release any memory held in C # that are no longer needed. py_tf.TF_DeleteLibraryHandle(lib_handle) # Get a unique name for the module. module_name = hashlib.md5(wrappers).hexdigest() if module_name in sys.modules: return sys.modules[module_name] module = imp.new_module(module_name) # pylint: disable=exec-used exec(wrappers, module.__dict__) # Stash away the library handle for making calls into the dynamic library. module.LIB_HANDLE = lib_handle # OpDefs of the list of ops defined in the library. module.OP_LIST = op_list sys.modules[module_name] = module return module
Example #2
Source File: load_library.py From auto-alt-text-lambda-api with MIT License | 4 votes |
def load_op_library(library_filename): """Loads a TensorFlow plugin, containing custom ops and kernels. Pass "library_filename" to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. When the library is loaded, ops and kernels registered in the library via the `REGISTER_*` macros are made available in the TensorFlow process. Note that ops with the same name as an existing op are rejected and not registered with the process. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: A python module containing the Python wrappers for Ops defined in the plugin. Raises: RuntimeError: when unable to load the library or get the python wrappers. """ status = py_tf.TF_NewStatus() lib_handle = py_tf.TF_LoadLibrary(library_filename, status) try: error_code = py_tf.TF_GetCode(status) if error_code != 0: error_msg = compat.as_text(py_tf.TF_Message(status)) # pylint: disable=protected-access raise errors_impl._make_specific_exception( None, None, error_msg, error_code) # pylint: enable=protected-access finally: py_tf.TF_DeleteStatus(status) op_list_str = py_tf.TF_GetOpList(lib_handle) op_list = op_def_pb2.OpList() op_list.ParseFromString(compat.as_bytes(op_list_str)) wrappers = py_tf.GetPythonWrappers(op_list_str) # Get a unique name for the module. module_name = hashlib.md5(wrappers).hexdigest() if module_name in sys.modules: return sys.modules[module_name] module = imp.new_module(module_name) # pylint: disable=exec-used exec(wrappers, module.__dict__) # Stash away the library handle for making calls into the dynamic library. module.LIB_HANDLE = lib_handle # OpDefs of the list of ops defined in the library. module.OP_LIST = op_list sys.modules[module_name] = module return module
Example #3
Source File: load_library.py From deep_image_model with Apache License 2.0 | 4 votes |
def load_op_library(library_filename): """Loads a TensorFlow plugin, containing custom ops and kernels. Pass "library_filename" to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. When the library is loaded, ops and kernels registered in the library via the `REGISTER_*` macros are made available in the TensorFlow process. Note that ops with the same name as an existing op are rejected and not registered with the process. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: A python module containing the Python wrappers for Ops defined in the plugin. Raises: RuntimeError: when unable to load the library or get the python wrappers. """ status = py_tf.TF_NewStatus() lib_handle = py_tf.TF_LoadLibrary(library_filename, status) try: error_code = py_tf.TF_GetCode(status) if error_code != 0: error_msg = compat.as_text(py_tf.TF_Message(status)) # pylint: disable=protected-access raise errors_impl._make_specific_exception( None, None, error_msg, error_code) # pylint: enable=protected-access finally: py_tf.TF_DeleteStatus(status) op_list_str = py_tf.TF_GetOpList(lib_handle) op_list = op_def_pb2.OpList() op_list.ParseFromString(compat.as_bytes(op_list_str)) wrappers = py_tf.GetPythonWrappers(op_list_str) # Get a unique name for the module. module_name = hashlib.md5(wrappers).hexdigest() if module_name in sys.modules: return sys.modules[module_name] module = imp.new_module(module_name) # pylint: disable=exec-used exec(wrappers, module.__dict__) # Stash away the library handle for making calls into the dynamic library. module.LIB_HANDLE = lib_handle # OpDefs of the list of ops defined in the library. module.OP_LIST = op_list sys.modules[module_name] = module return module
Example #4
Source File: load_library.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 4 votes |
def load_op_library(library_filename): """Loads a TensorFlow plugin, containing custom ops and kernels. Pass "library_filename" to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. When the library is loaded, ops and kernels registered in the library via the `REGISTER_*` macros are made available in the TensorFlow process. Note that ops with the same name as an existing op are rejected and not registered with the process. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: A python module containing the Python wrappers for Ops defined in the plugin. Raises: RuntimeError: when unable to load the library or get the python wrappers. """ with errors_impl.raise_exception_on_not_ok_status() as status: lib_handle = py_tf.TF_LoadLibrary(library_filename, status) op_list_str = py_tf.TF_GetOpList(lib_handle) op_list = op_def_pb2.OpList() op_list.ParseFromString(compat.as_bytes(op_list_str)) wrappers = py_tf.GetPythonWrappers(op_list_str) # Delete the library handle to release any memory held in C # that are no longer needed. py_tf.TF_DeleteLibraryHandle(lib_handle) # Get a unique name for the module. module_name = hashlib.md5(wrappers).hexdigest() if module_name in sys.modules: return sys.modules[module_name] module = imp.new_module(module_name) # pylint: disable=exec-used exec(wrappers, module.__dict__) # Stash away the library handle for making calls into the dynamic library. module.LIB_HANDLE = lib_handle # OpDefs of the list of ops defined in the library. module.OP_LIST = op_list sys.modules[module_name] = module return module
Example #5
Source File: load_library.py From keras-lambda with MIT License | 4 votes |
def load_op_library(library_filename): """Loads a TensorFlow plugin, containing custom ops and kernels. Pass "library_filename" to a platform-specific mechanism for dynamically loading a library. The rules for determining the exact location of the library are platform-specific and are not documented here. When the library is loaded, ops and kernels registered in the library via the `REGISTER_*` macros are made available in the TensorFlow process. Note that ops with the same name as an existing op are rejected and not registered with the process. Args: library_filename: Path to the plugin. Relative or absolute filesystem path to a dynamic library file. Returns: A python module containing the Python wrappers for Ops defined in the plugin. Raises: RuntimeError: when unable to load the library or get the python wrappers. """ status = py_tf.TF_NewStatus() lib_handle = py_tf.TF_LoadLibrary(library_filename, status) try: error_code = py_tf.TF_GetCode(status) if error_code != 0: error_msg = compat.as_text(py_tf.TF_Message(status)) # pylint: disable=protected-access raise errors_impl._make_specific_exception( None, None, error_msg, error_code) # pylint: enable=protected-access finally: py_tf.TF_DeleteStatus(status) op_list_str = py_tf.TF_GetOpList(lib_handle) op_list = op_def_pb2.OpList() op_list.ParseFromString(compat.as_bytes(op_list_str)) wrappers = py_tf.GetPythonWrappers(op_list_str) # Get a unique name for the module. module_name = hashlib.md5(wrappers).hexdigest() if module_name in sys.modules: return sys.modules[module_name] module = imp.new_module(module_name) # pylint: disable=exec-used exec(wrappers, module.__dict__) # Stash away the library handle for making calls into the dynamic library. module.LIB_HANDLE = lib_handle # OpDefs of the list of ops defined in the library. module.OP_LIST = op_list sys.modules[module_name] = module return module