Python tensorflow.python.ops.lookup_ops.index_to_string_table_from_file() Examples
The following are 19
code examples of tensorflow.python.ops.lookup_ops.index_to_string_table_from_file().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.lookup_ops
, or try the search function
.
Example #1
Source File: inference.py From nslt with Apache License 2.0 | 6 votes |
def create_infer_model(model_creator, hparams, scope=None, single_cell_fn=None): """Create inference model.""" graph = tf.Graph() tgt_vocab_file = hparams.tgt_vocab_file with graph.as_default(): tgt_vocab_table = vocab_utils.create_tgt_vocab_table(tgt_vocab_file) reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(tgt_vocab_file, default_value=vocab_utils.UNK) src_placeholder = tf.placeholder(shape=[None], dtype=tf.string) src_dataset = tf.contrib.data.Dataset.from_tensor_slices(src_placeholder) iterator = iterator_utils.get_infer_iterator(src_dataset, source_reverse=hparams.source_reverse, src_max_len=hparams.src_max_len_infer) model = model_creator(hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.INFER, target_vocab_table=tgt_vocab_table, reverse_target_vocab_table=reverse_tgt_vocab_table, scope=scope, single_cell_fn=single_cell_fn) return InferModel(graph=graph, model=model, src_placeholder=src_placeholder, iterator=iterator)
Example #2
Source File: estimator.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def _convert_ids_to_strings(tgt_vocab_file, ids): """Convert prediction ids to words.""" with tf.Session() as sess: reverse_target_vocab_table = lookup_ops.index_to_string_table_from_file( tgt_vocab_file, default_value=vocab_utils.UNK) sess.run(tf.tables_initializer()) translations = sess.run( reverse_target_vocab_table.lookup( tf.to_int64(tf.convert_to_tensor(np.asarray(ids))))) return translations
Example #3
Source File: estimator.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def build_graph_dist_strategy(self, features, labels, mode, params): """Model function.""" del labels, params misc_utils.print_out("Running dist_strategy mode_fn") hparams = self.hparams # Create a GNMT model for training. # assert (hparams.encoder_type == "gnmt" or # hparams.attention_architecture in ["gnmt", "gnmt_v2"]) with mixed_precision_scope(): model = gnmt_model.GNMTModel(hparams, mode=mode, features=features) if mode == tf.contrib.learn.ModeKeys.INFER: sample_ids = model.sample_id reverse_target_vocab_table = lookup_ops.index_to_string_table_from_file( hparams.tgt_vocab_file, default_value=vocab_utils.UNK) sample_words = reverse_target_vocab_table.lookup( tf.to_int64(sample_ids)) # make sure outputs is of shape [batch_size, time] or [beam_width, # batch_size, time] when using beam search. if hparams.time_major: sample_words = tf.transpose(sample_words) elif sample_words.shape.ndims == 3: # beam search output in [batch_size, time, beam_width] shape. sample_words = tf.transpose(sample_words, [2, 0, 1]) predictions = {"predictions": sample_words} # return loss, vars, grads, predictions, train_op, scaffold return None, None, None, predictions, None, None elif mode == tf.contrib.learn.ModeKeys.TRAIN: loss = model.train_loss train_op = model.update return loss, model.params, model.grads, None, train_op, None else: raise ValueError("Unknown mode in model_fn: %s" % mode)
Example #4
Source File: estimator.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def _convert_ids_to_strings(tgt_vocab_file, ids): """Convert prediction ids to words.""" with tf.Session() as sess: reverse_target_vocab_table = lookup_ops.index_to_string_table_from_file( tgt_vocab_file, default_value=vocab_utils.UNK) sess.run(tf.tables_initializer()) translations = sess.run( reverse_target_vocab_table.lookup( tf.to_int64(tf.convert_to_tensor(np.asarray(ids))))) return translations
Example #5
Source File: estimator.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def build_graph_dist_strategy(self, features, labels, mode, params): """Model function.""" del labels, params misc_utils.print_out("Running dist_strategy mode_fn") hparams = self.hparams # Create a GNMT model for training. # assert (hparams.encoder_type == "gnmt" or # hparams.attention_architecture in ["gnmt", "gnmt_v2"]) with mixed_precision_scope(): model = gnmt_model.GNMTModel(hparams, mode=mode, features=features) if mode == tf.contrib.learn.ModeKeys.INFER: sample_ids = model.sample_id reverse_target_vocab_table = lookup_ops.index_to_string_table_from_file( hparams.tgt_vocab_file, default_value=vocab_utils.UNK) sample_words = reverse_target_vocab_table.lookup( tf.to_int64(sample_ids)) # make sure outputs is of shape [batch_size, time] or [beam_width, # batch_size, time] when using beam search. if hparams.time_major: sample_words = tf.transpose(sample_words) elif sample_words.shape.ndims == 3: # beam search output in [batch_size, time, beam_width] shape. sample_words = tf.transpose(sample_words, [2, 0, 1]) predictions = {"predictions": sample_words} # return loss, vars, grads, predictions, train_op, scaffold return None, None, None, predictions, None, None elif mode == tf.contrib.learn.ModeKeys.TRAIN: loss = model.train_loss train_op = model.update return loss, model.params, model.grads, None, train_op, None else: raise ValueError("Unknown mode in model_fn: %s" % mode)
Example #6
Source File: estimator.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def _convert_ids_to_strings(tgt_vocab_file, ids): """Convert prediction ids to words.""" with tf.Session() as sess: reverse_target_vocab_table = lookup_ops.index_to_string_table_from_file( tgt_vocab_file, default_value=vocab_utils.UNK) sess.run(tf.tables_initializer()) translations = sess.run( reverse_target_vocab_table.lookup( tf.to_int64(tf.convert_to_tensor(np.asarray(ids))))) return translations
Example #7
Source File: model_helper.py From NETransliteration-COLING2018 with MIT License | 5 votes |
def create_infer_model(model_creator, hparams, scope=None, extra_args=None): """Create inference model.""" graph = tf.Graph() src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file with graph.as_default(), tf.container(scope or "infer"): src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab) reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file( tgt_vocab_file, default_value=vocab_utils.UNK) src_placeholder = tf.placeholder(shape=[None], dtype=tf.string) batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64) src_dataset = tf.contrib.data.Dataset.from_tensor_slices( src_placeholder) iterator = iterator_utils.get_infer_iterator( src_dataset, src_vocab_table, batch_size=batch_size_placeholder, eos=hparams.eos, source_reverse=hparams.source_reverse, src_max_len=hparams.src_max_len_infer) model = model_creator( hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.INFER, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, reverse_target_vocab_table=reverse_tgt_vocab_table, scope=scope, extra_args=extra_args) return InferModel( graph=graph, model=model, src_placeholder=src_placeholder, batch_size_placeholder=batch_size_placeholder, iterator=iterator)
Example #8
Source File: model_helper.py From parallax with Apache License 2.0 | 5 votes |
def create_infer_model(model_creator, hparams, scope=None, extra_args=None): """Create inference model.""" graph = tf.Graph() src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file with graph.as_default(), tf.container(scope or "infer"): src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab) reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file( tgt_vocab_file, default_value=vocab_utils.UNK) src_placeholder = tf.placeholder(shape=[None], dtype=tf.string) batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64) src_dataset = tf.data.Dataset.from_tensor_slices( src_placeholder) iterator = iterator_utils.get_infer_iterator( src_dataset, src_vocab_table, batch_size=batch_size_placeholder, eos=hparams.eos, src_max_len=hparams.src_max_len_infer) model = model_creator( hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.INFER, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, reverse_target_vocab_table=reverse_tgt_vocab_table, scope=scope, extra_args=extra_args) return InferModel( graph=graph, model=model, src_placeholder=src_placeholder, batch_size_placeholder=batch_size_placeholder, iterator=iterator)
Example #9
Source File: tokenizeddata.py From ChatLearner with Apache License 2.0 | 5 votes |
def __init__(self, corpus_dir, hparams=None, training=True, buffer_size=8192): """ Args: corpus_dir: Name of the folder storing corpus files for training. hparams: The object containing the loaded hyper parameters. If None, it will be initialized here. training: Whether to use this object for training. buffer_size: The buffer size used for mapping process during data processing. """ if hparams is None: self.hparams = HParams(corpus_dir).hparams else: self.hparams = hparams self.src_max_len = self.hparams.src_max_len self.tgt_max_len = self.hparams.tgt_max_len self.training = training self.text_set = None self.id_set = None vocab_file = os.path.join(corpus_dir, VOCAB_FILE) self.vocab_size, _ = check_vocab(vocab_file) self.vocab_table = lookup_ops.index_table_from_file(vocab_file, default_value=self.hparams.unk_id) # print("vocab_size = {}".format(self.vocab_size)) if training: self.case_table = prepare_case_table() self.reverse_vocab_table = None self._load_corpus(corpus_dir) self._convert_to_tokens(buffer_size) else: self.case_table = None self.reverse_vocab_table = \ lookup_ops.index_to_string_table_from_file(vocab_file, default_value=self.hparams.unk_token)
Example #10
Source File: model_helper.py From inference with Apache License 2.0 | 5 votes |
def create_infer_model(model_creator, hparams, scope=None, extra_args=None): """Create inference model.""" graph = tf.Graph() src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file with graph.as_default(), tf.container(scope or "infer"): src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab) reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file( tgt_vocab_file, default_value=vocab_utils.UNK) src_placeholder = tf.placeholder(shape=[None], dtype=tf.string) batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64) src_dataset = tf.data.Dataset.from_tensor_slices( src_placeholder) iterator = iterator_utils.get_infer_iterator( src_dataset, src_vocab_table, batch_size=batch_size_placeholder, eos=hparams.eos, src_max_len=hparams.src_max_len_infer, use_char_encode=hparams.use_char_encode) model = model_creator( hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.INFER, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, reverse_target_vocab_table=reverse_tgt_vocab_table, scope=scope, extra_args=extra_args) return InferModel( graph=graph, model=model, src_placeholder=src_placeholder, batch_size_placeholder=batch_size_placeholder, iterator=iterator)
Example #11
Source File: vocab.py From THRED with MIT License | 5 votes |
def create_rev_vocab_table(vocab_file): return lookup_ops.index_to_string_table_from_file(vocab_file, default_value=UNK)
Example #12
Source File: model_helper.py From nmt with Apache License 2.0 | 5 votes |
def create_infer_model(model_creator, hparams, scope=None, extra_args=None): """Create inference model.""" graph = tf.Graph() src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file with graph.as_default(), tf.container(scope or "infer"): src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab) reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file( tgt_vocab_file, default_value=vocab_utils.UNK) src_placeholder = tf.placeholder(shape=[None], dtype=tf.string) batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64) src_dataset = tf.data.Dataset.from_tensor_slices( src_placeholder) iterator = iterator_utils.get_infer_iterator( src_dataset, src_vocab_table, batch_size=batch_size_placeholder, eos=hparams.eos, src_max_len=hparams.src_max_len_infer, use_char_encode=hparams.use_char_encode) model = model_creator( hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.INFER, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, reverse_target_vocab_table=reverse_tgt_vocab_table, scope=scope, extra_args=extra_args) return InferModel( graph=graph, model=model, src_placeholder=src_placeholder, batch_size_placeholder=batch_size_placeholder, iterator=iterator)
Example #13
Source File: native_module_test.py From hub with Apache License 2.0 | 5 votes |
def do_table_lookup(indices, vocabulary_file): table = index_to_string_table_from_file( vocabulary_file=vocabulary_file, default_value="UNKNOWN") return table.lookup(indices)
Example #14
Source File: e2e_test.py From hub with Apache License 2.0 | 5 votes |
def test_module_export_vocab_on_custom_fs(self): root_dir = "file://%s" % self.get_temp_dir() export_dir = "%s_%s" % (root_dir, "export") tf_v1.gfile.MakeDirs(export_dir) # Create a module with a vocab file located on a custom filesystem. vocab_dir = os.path.join(root_dir, "vocab_location") tf_v1.gfile.MakeDirs(vocab_dir) vocab_filename = os.path.join(vocab_dir, "tokens.txt") tf_utils.atomic_write_string_to_file(vocab_filename, "one", False) def create_assets_module_fn(): def assets_module_fn(): indices = tf_v1.placeholder(dtype=tf.int64, name="indices") table = index_to_string_table_from_file( vocabulary_file=vocab_filename, default_value="UNKNOWN") outputs = table.lookup(indices) hub.add_signature(inputs=indices, outputs=outputs) return assets_module_fn with tf.Graph().as_default(): assets_module_fn = create_assets_module_fn() spec = hub.create_module_spec(assets_module_fn) embedding_module = hub.Module(spec) with tf_v1.Session() as sess: sess.run(tf_v1.tables_initializer()) embedding_module.export(export_dir, sess) module_files = tf_v1.gfile.ListDirectory(export_dir) self.assertListEqual( ["assets", "saved_model.pb", "tfhub_module.pb", "variables"], sorted(module_files)) module_files = tf_v1.gfile.ListDirectory(os.path.join(export_dir, "assets")) self.assertListEqual(["tokens.txt"], module_files)
Example #15
Source File: model_helper.py From nlp-architect with Apache License 2.0 | 4 votes |
def create_infer_model(model_creator, hparams, scope=None, extra_args=None): """Create inference model.""" graph = tf.Graph() src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file with graph.as_default(), tf.container(scope or "infer"): src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab ) reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file( tgt_vocab_file, default_value=vocab_utils.UNK ) src_placeholder = tf.placeholder(shape=[None], dtype=tf.string) batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64) src_dataset = tf.data.Dataset.from_tensor_slices(src_placeholder) iterator = iterator_utils.get_infer_iterator( src_dataset, src_vocab_table, batch_size=batch_size_placeholder, eos=hparams.eos, src_max_len=hparams.src_max_len_infer, use_char_encode=hparams.use_char_encode, ) model = model_creator( hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.INFER, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, reverse_target_vocab_table=reverse_tgt_vocab_table, scope=scope, extra_args=extra_args, ) return InferModel( graph=graph, model=model, src_placeholder=src_placeholder, batch_size_placeholder=batch_size_placeholder, iterator=iterator, )
Example #16
Source File: model_helper.py From nlp-architect with Apache License 2.0 | 4 votes |
def create_eval_model(model_creator, hparams, scope=None, extra_args=None): """Create train graph, model, src/tgt file holders, and iterator.""" src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file graph = tf.Graph() with graph.as_default(), tf.container(scope or "eval"): src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab ) reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file( tgt_vocab_file, default_value=vocab_utils.UNK ) src_file_placeholder = tf.placeholder(shape=(), dtype=tf.string) tgt_file_placeholder = tf.placeholder(shape=(), dtype=tf.string) src_dataset = tf.data.TextLineDataset(src_file_placeholder) tgt_dataset = tf.data.TextLineDataset(tgt_file_placeholder) iterator = iterator_utils.get_iterator( src_dataset, tgt_dataset, src_vocab_table, tgt_vocab_table, hparams.batch_size, sos=hparams.sos, eos=hparams.eos, random_seed=hparams.random_seed, num_buckets=hparams.num_buckets, src_max_len=hparams.src_max_len_infer, tgt_max_len=hparams.tgt_max_len_infer, use_char_encode=hparams.use_char_encode, ) model = model_creator( hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.EVAL, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, reverse_target_vocab_table=reverse_tgt_vocab_table, scope=scope, extra_args=extra_args, ) return EvalModel( graph=graph, model=model, src_file_placeholder=src_file_placeholder, tgt_file_placeholder=tgt_file_placeholder, iterator=iterator, )
Example #17
Source File: expert_model.py From qebrain with BSD 2-Clause "Simplified" License | 4 votes |
def create_infer_model(model_creator, hparams, scope=None): graph = tf.Graph() src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file with graph.as_default(), tf.container(scope or "infer"): src_vocab_table, tgt_vocab_table = create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab, hparams.max_vocab_size) reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(tgt_vocab_file, default_value=UNK) src_placeholder = tf.placeholder(shape=[None], dtype=tf.string) tgt_placeholder = tf.placeholder(shape=[None], dtype=tf.string) batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64) src_dataset = tf.data.Dataset.from_tensor_slices(src_placeholder) tgt_dataset = tf.data.Dataset.from_tensor_slices(tgt_placeholder) iterator = get_infer_iterator_exp( src_dataset, tgt_dataset, src_vocab_table, tgt_vocab_table, hparams.infer_batch_size, sos=hparams.sos, eos=hparams.eos, src_max_len=hparams.src_max_len_infer, tgt_max_len=hparams.tgt_max_len_infer) model = model_creator( hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.INFER, reverse_target_vocab_table=reverse_tgt_vocab_table, scope=scope) return InferModel( graph=graph, model=model, src_placeholder=src_placeholder, tgt_placeholder=tgt_placeholder, batch_size_placeholder=batch_size_placeholder, iterator=iterator)
Example #18
Source File: model_helper.py From nmt with Apache License 2.0 | 4 votes |
def create_eval_model(model_creator, hparams, scope=None, extra_args=None): """Create train graph, model, src/tgt file holders, and iterator.""" src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file graph = tf.Graph() with graph.as_default(), tf.container(scope or "eval"): src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab) reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file( tgt_vocab_file, default_value=vocab_utils.UNK) src_file_placeholder = tf.placeholder(shape=(), dtype=tf.string) tgt_file_placeholder = tf.placeholder(shape=(), dtype=tf.string) src_dataset = tf.data.TextLineDataset(src_file_placeholder) tgt_dataset = tf.data.TextLineDataset(tgt_file_placeholder) iterator = iterator_utils.get_iterator( src_dataset, tgt_dataset, src_vocab_table, tgt_vocab_table, hparams.batch_size, sos=hparams.sos, eos=hparams.eos, random_seed=hparams.random_seed, num_buckets=hparams.num_buckets, src_max_len=hparams.src_max_len_infer, tgt_max_len=hparams.tgt_max_len_infer, use_char_encode=hparams.use_char_encode) model = model_creator( hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.EVAL, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, reverse_target_vocab_table=reverse_tgt_vocab_table, scope=scope, extra_args=extra_args) return EvalModel( graph=graph, model=model, src_file_placeholder=src_file_placeholder, tgt_file_placeholder=tgt_file_placeholder, iterator=iterator)
Example #19
Source File: model_helper.py From inference with Apache License 2.0 | 4 votes |
def create_eval_model(model_creator, hparams, scope=None, extra_args=None): """Create train graph, model, src/tgt file holders, and iterator.""" src_vocab_file = hparams.src_vocab_file tgt_vocab_file = hparams.tgt_vocab_file graph = tf.Graph() with graph.as_default(), tf.container(scope or "eval"): src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables( src_vocab_file, tgt_vocab_file, hparams.share_vocab) reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file( tgt_vocab_file, default_value=vocab_utils.UNK) src_file_placeholder = tf.placeholder(shape=(), dtype=tf.string) tgt_file_placeholder = tf.placeholder(shape=(), dtype=tf.string) src_dataset = tf.data.TextLineDataset(src_file_placeholder) tgt_dataset = tf.data.TextLineDataset(tgt_file_placeholder) iterator = iterator_utils.get_iterator( src_dataset, tgt_dataset, src_vocab_table, tgt_vocab_table, hparams.batch_size, sos=hparams.sos, eos=hparams.eos, random_seed=hparams.random_seed, num_buckets=hparams.num_buckets, src_max_len=hparams.src_max_len_infer, tgt_max_len=hparams.tgt_max_len_infer, use_char_encode=hparams.use_char_encode) model = model_creator( hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.EVAL, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, reverse_target_vocab_table=reverse_tgt_vocab_table, scope=scope, extra_args=extra_args) return EvalModel( graph=graph, model=model, src_file_placeholder=src_file_placeholder, tgt_file_placeholder=tgt_file_placeholder, iterator=iterator)