Python tensorflow.python.ops.lookup_ops.index_to_string_table_from_tensor() Examples
The following are 7
code examples of tensorflow.python.ops.lookup_ops.index_to_string_table_from_tensor().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.lookup_ops
, or try the search function
.
Example #1
Source File: binary_class_head.py From estimator with Apache License 2.0 | 6 votes |
def _class_string_table(self): """Creates a lookup table for class_string. In eager execution, this lookup table will be lazily created on the first call of `self._class_string_table` and cached for later use; In graph execution, it will be created on demand. Returns: A hash table for lookup. """ if (self._cached_class_string_table is None or not tf.executing_eagerly()): self._cached_class_string_table = ( lookup_ops.index_to_string_table_from_tensor( vocabulary_list=self._label_vocabulary, name='class_string_lookup')) return self._cached_class_string_table
Example #2
Source File: multi_class_head.py From estimator with Apache License 2.0 | 6 votes |
def _class_string_table(self): """Creates a lookup table for class_string. In eager execution, this lookup table will be lazily created on the first call of `self._class_string_table` and cached for later use; In graph execution, it will be created on demand. Returns: A hash table for lookup. """ if (self._cached_class_string_table is None or not tf.executing_eagerly()): self._cached_class_string_table = ( lookup_ops.index_to_string_table_from_tensor( vocabulary_list=self._label_vocabulary, name='class_string_lookup')) return self._cached_class_string_table
Example #3
Source File: common_test_utils.py From NETransliteration-COLING2018 with MIT License | 5 votes |
def create_test_iterator(hparams, mode): """Create test iterator.""" src_vocab_table = lookup_ops.index_table_from_tensor( tf.constant([hparams.eos, "a", "b", "c", "d"])) tgt_vocab_mapping = tf.constant([hparams.sos, hparams.eos, "a", "b", "c"]) tgt_vocab_table = lookup_ops.index_table_from_tensor(tgt_vocab_mapping) if mode == tf.contrib.learn.ModeKeys.INFER: reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_tensor( tgt_vocab_mapping) src_dataset = tf.contrib.data.Dataset.from_tensor_slices( tf.constant(["a a b b c", "a b b"])) if mode != tf.contrib.learn.ModeKeys.INFER: tgt_dataset = tf.contrib.data.Dataset.from_tensor_slices( tf.constant(["a b c b c", "a b c b"])) return ( iterator_utils.get_iterator( src_dataset=src_dataset, tgt_dataset=tgt_dataset, src_vocab_table=src_vocab_table, tgt_vocab_table=tgt_vocab_table, batch_size=hparams.batch_size, sos=hparams.sos, eos=hparams.eos, source_reverse=hparams.source_reverse, random_seed=hparams.random_seed, num_buckets=hparams.num_buckets), src_vocab_table, tgt_vocab_table) else: return ( iterator_utils.get_infer_iterator( src_dataset=src_dataset, src_vocab_table=src_vocab_table, eos=hparams.eos, source_reverse=hparams.source_reverse, batch_size=hparams.batch_size), src_vocab_table, tgt_vocab_table, reverse_tgt_vocab_table)
Example #4
Source File: common_test_utils.py From parallax with Apache License 2.0 | 5 votes |
def create_test_iterator(hparams, mode): """Create test iterator.""" src_vocab_table = lookup_ops.index_table_from_tensor( tf.constant([hparams.eos, "a", "b", "c", "d"])) tgt_vocab_mapping = tf.constant([hparams.sos, hparams.eos, "a", "b", "c"]) tgt_vocab_table = lookup_ops.index_table_from_tensor(tgt_vocab_mapping) if mode == tf.contrib.learn.ModeKeys.INFER: reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_tensor( tgt_vocab_mapping) src_dataset = tf.data.Dataset.from_tensor_slices( tf.constant(["a a b b c", "a b b"])) if mode != tf.contrib.learn.ModeKeys.INFER: tgt_dataset = tf.data.Dataset.from_tensor_slices( tf.constant(["a b c b c", "a b c b"])) return ( iterator_utils.get_iterator( src_dataset=src_dataset, tgt_dataset=tgt_dataset, src_vocab_table=src_vocab_table, tgt_vocab_table=tgt_vocab_table, batch_size=hparams.batch_size, sos=hparams.sos, eos=hparams.eos, random_seed=hparams.random_seed, num_buckets=hparams.num_buckets), src_vocab_table, tgt_vocab_table) else: return ( iterator_utils.get_infer_iterator( src_dataset=src_dataset, src_vocab_table=src_vocab_table, eos=hparams.eos, batch_size=hparams.batch_size), src_vocab_table, tgt_vocab_table, reverse_tgt_vocab_table)
Example #5
Source File: common_test_utils.py From inference with Apache License 2.0 | 5 votes |
def create_test_iterator(hparams, mode): """Create test iterator.""" src_vocab_table = lookup_ops.index_table_from_tensor( tf.constant([hparams.eos, "a", "b", "c", "d"])) tgt_vocab_mapping = tf.constant([hparams.sos, hparams.eos, "a", "b", "c"]) tgt_vocab_table = lookup_ops.index_table_from_tensor(tgt_vocab_mapping) if mode == tf.contrib.learn.ModeKeys.INFER: reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_tensor( tgt_vocab_mapping) src_dataset = tf.data.Dataset.from_tensor_slices( tf.constant(["a a b b c", "a b b"])) if mode != tf.contrib.learn.ModeKeys.INFER: tgt_dataset = tf.data.Dataset.from_tensor_slices( tf.constant(["a b c b c", "a b c b"])) return ( iterator_utils.get_iterator( src_dataset=src_dataset, tgt_dataset=tgt_dataset, src_vocab_table=src_vocab_table, tgt_vocab_table=tgt_vocab_table, batch_size=hparams.batch_size, sos=hparams.sos, eos=hparams.eos, random_seed=hparams.random_seed, num_buckets=hparams.num_buckets), src_vocab_table, tgt_vocab_table) else: return ( iterator_utils.get_infer_iterator( src_dataset=src_dataset, src_vocab_table=src_vocab_table, eos=hparams.eos, batch_size=hparams.batch_size), src_vocab_table, tgt_vocab_table, reverse_tgt_vocab_table)
Example #6
Source File: common_test_utils.py From nmt with Apache License 2.0 | 5 votes |
def create_test_iterator(hparams, mode): """Create test iterator.""" src_vocab_table = lookup_ops.index_table_from_tensor( tf.constant([hparams.eos, "a", "b", "c", "d"])) tgt_vocab_mapping = tf.constant([hparams.sos, hparams.eos, "a", "b", "c"]) tgt_vocab_table = lookup_ops.index_table_from_tensor(tgt_vocab_mapping) if mode == tf.contrib.learn.ModeKeys.INFER: reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_tensor( tgt_vocab_mapping) src_dataset = tf.data.Dataset.from_tensor_slices( tf.constant(["a a b b c", "a b b"])) if mode != tf.contrib.learn.ModeKeys.INFER: tgt_dataset = tf.data.Dataset.from_tensor_slices( tf.constant(["a b c b c", "a b c b"])) return ( iterator_utils.get_iterator( src_dataset=src_dataset, tgt_dataset=tgt_dataset, src_vocab_table=src_vocab_table, tgt_vocab_table=tgt_vocab_table, batch_size=hparams.batch_size, sos=hparams.sos, eos=hparams.eos, random_seed=hparams.random_seed, num_buckets=hparams.num_buckets), src_vocab_table, tgt_vocab_table) else: return ( iterator_utils.get_infer_iterator( src_dataset=src_dataset, src_vocab_table=src_vocab_table, eos=hparams.eos, batch_size=hparams.batch_size), src_vocab_table, tgt_vocab_table, reverse_tgt_vocab_table)
Example #7
Source File: common_test_utils.py From active-qa with Apache License 2.0 | 4 votes |
def create_test_iterator(hparams, mode, trie_excludes=None): """Create test iterator.""" src_vocab_table = lookup_ops.index_table_from_tensor( tf.constant([hparams.eos, "a", "b", "c", "d"])) tgt_vocab_mapping = tf.constant([hparams.sos, hparams.eos, "a", "b", "c"]) tgt_vocab_table = lookup_ops.index_table_from_tensor(tgt_vocab_mapping) reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_tensor( tgt_vocab_mapping) src_dataset = tf.data.Dataset.from_tensor_slices( tf.constant(["a a b b c", "a b b"])) ctx_dataset = tf.data.Dataset.from_tensor_slices( tf.constant(["c b c b a", "b c b a"])) trie_excludes = trie_excludes or [] trie_excludes = " {} ".format(hparams.eos).join(trie_excludes) tex_dataset = tf.data.Dataset.from_tensor_slices( tf.constant([trie_excludes, trie_excludes])) if mode != tf.contrib.learn.ModeKeys.INFER: tgt_dataset = tf.data.Dataset.from_tensor_slices( tf.constant(["a b c b c", "a b c b"])) return (iterator_utils.get_iterator( hparams=hparams, src_dataset=src_dataset, tgt_dataset=tgt_dataset, ctx_dataset=ctx_dataset, annot_dataset=None, src_vocab_table=src_vocab_table, tgt_vocab_table=tgt_vocab_table, batch_size=hparams.batch_size, sos=hparams.sos, eos=hparams.eos, random_seed=hparams.random_seed, num_buckets=hparams.num_buckets), src_vocab_table, tgt_vocab_table, reverse_tgt_vocab_table) else: return (iterator_utils.get_infer_iterator( hparams=hparams, src_dataset=src_dataset, ctx_dataset=ctx_dataset, annot_dataset=None, trie_exclude_dataset=tex_dataset, src_vocab_table=src_vocab_table, tgt_vocab_table=tgt_vocab_table, eos=hparams.eos, batch_size=hparams.batch_size), src_vocab_table, tgt_vocab_table, reverse_tgt_vocab_table)