Python chainer.backends.cuda.get_device_from_array() Examples
The following are 12
code examples of chainer.backends.cuda.get_device_from_array().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.backends.cuda
, or try the search function
.
Example #1
Source File: theano_function.py From chainer with MIT License | 6 votes |
def backward(self, inputs, grads): gpu = backend.get_array_module(*inputs) is cuda.cupy # TODO(unno): We can remove redundant gpu-cpu copy using # theano.sandbox.cuda.basic_ops.gpu_from_host args = [cuda.to_cpu(x) for x in inputs + grads] outputs = self.backward_func(*args) assert len(outputs) == len(inputs) if gpu: # TODO(unno): We can remove redundant gpu-cpu copy using # theano.sandbox.cuda.CudaNdarray.gpudata device = cuda.get_device_from_array(inputs) outputs = [cuda.to_gpu(x, device) for x in outputs] results = [] for o, i in zip(outputs, inputs): if i.dtype.kind != 'f': o = None elif o.dtype != i.dtype: o = o.astype(i.dtype) results.append(o) return tuple(results)
Example #2
Source File: test_cuda.py From chainer with MIT License | 5 votes |
def test_get_device_from_array_for_numpy_int(self): assert cuda.get_device_from_array(numpy.int64(0)) is cuda.DummyDevice
Example #3
Source File: test_cuda.py From chainer with MIT License | 5 votes |
def test_get_device_for_empty_array(self): x = cuda.get_device_from_array(cuda.cupy.array([]).reshape((0, 10))) # TODO(okuta): Only check `assert x == cuda.Device(0)` # when cupy/cupy#946 is merged assert x == cuda.Device(0) or x == cuda.DummyDevice
Example #4
Source File: test_cuda.py From chainer with MIT License | 5 votes |
def test_get_device_warning(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') cuda.get_device(cuda.cupy.array([1])) assert len(w) == 1 assert w[0].category is DeprecationWarning assert ('get_device is deprecated. Please use get_device_from_id' ' or get_device_from_array instead.' in str(w[0].message))
Example #5
Source File: test_cuda.py From chainer with MIT License | 5 votes |
def test_get_device_from_array(self): arr = cuda.cupy.array([0]) assert cuda.get_device_from_array(arr) == cuda.Device(0)
Example #6
Source File: test_cuda.py From chainer with MIT License | 5 votes |
def test_get_device_from_array(self, backend_config): with cuda.Device(backend_config.cuda_device): arr = cuda.ndarray((), numpy.float32) # Test precondition check assert arr.device.id == backend_config.cuda_device expected_device = backend_config.device device = backend.GpuDevice.from_array(arr) self.check_device(device, backend_config) assert device == expected_device device = backend.get_device_from_array(arr) self.check_device(device, backend_config) assert device == expected_device
Example #7
Source File: parameter.py From chainer with MIT License | 5 votes |
def __init__(self, array): super(Parameter, self).__init__() self.add_param('W', array.shape, dtype=array.dtype) self.W.array = array if isinstance(array, cuda.ndarray): self.to_gpu(cuda.get_device_from_array(array))
Example #8
Source File: theano_function.py From chainer with MIT License | 5 votes |
def forward(self, inputs): gpu = backend.get_array_module(*inputs) is cuda.cupy inputs = [cuda.to_cpu(x) for x in inputs] outputs = self.forward_func(*inputs) if gpu: # TODO(unno): We can remove redundant gpu-cpu copy using # theano.sandbox.cuda.CudaNdarray.gpudata device = cuda.get_device_from_array(inputs) outputs = [cuda.to_gpu(x, device) for x in outputs] return tuple(outputs)
Example #9
Source File: eval.py From models with MIT License | 5 votes |
def concat_arrays(arrays): # Convert `arrays` to numpy.ndarray or cupy.ndarray xp = cuda.get_array_module(arrays[0]) with cuda.get_device_from_array(arrays[0]): return xp.concatenate(arrays)
Example #10
Source File: gradient_scaling.py From chainercv with MIT License | 5 votes |
def __call__(self, rule, param): g = param.grad with cuda.get_device_from_array(g): g *= self.rate
Example #11
Source File: radam.py From kiss with GNU General Public License v3.0 | 5 votes |
def init_state(self, param): xp = backend.get_array_module(param.data) with cuda.get_device_from_array(param.data): self.state['m'] = xp.zeros_like(param.data) self.state['v'] = xp.zeros_like(param.data) # For iDeep if isinstance(param.data, intel64.mdarray): self.state['m'] = intel64.ideep.array( self.state['m'], itype=intel64.ideep.wgt_array) self.state['v'] = intel64.ideep.array( self.state['v'], itype=intel64.ideep.wgt_array)
Example #12
Source File: _utility.py From pytorch-sso with MIT License | 5 votes |
def _check_array(array, name): xp = cuda.get_array_module(array) with cuda.get_device_from_array(array): if not array.dtype == xp.float32: warnings.warn('non FP32 dtype detected in {}'.format(name)) array = array.astype(xp.float32) if not (array.flags.c_contiguous or array.flags.f_contiguous): warnings.warn('non contiguous array detected in {}'.format(name)) array = xp.ascontiguousarray(array) return array