Python mnist.MNIST Examples
The following are 5
code examples of mnist.MNIST().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mnist
, or try the search function
.
Example #1
Source File: data_loader.py From bayes_nn with MIT License | 6 votes |
def __init__(self, loc='data/raw'): """ Dataloader for the MNIST data. Relies on this library https://pypi.python.org/pypi/python-mnist/0.3 :param loc: """ mndata = MNIST(loc) self.data = {} # train data images, labels = mndata.load_training() images = np.array(images) labels = np.array(labels).astype(np.int64) self.data['X_train'] = self.normalize(images) self.data['y_train'] = labels # test data images, labels = mndata.load_testing() images = np.array(images) labels = np.array(labels).astype(np.int64) self.data['X_test'] = self.normalize(images) self.data['y_test'] = labels
Example #2
Source File: mnist_mlp_candle.py From Benchmarks with MIT License | 5 votes |
def initialize_parameters(): mnist_common = mnist.MNIST(mnist.file_path, 'mnist_params.txt', 'keras', prog='mnist_mlp', desc='MNIST example' ) # Initialize parameters gParameters = candle.finalize_parameters(mnist_common) csv_logger = CSVLogger('{}/params.log'.format(gParameters)) return gParameters
Example #3
Source File: mnist_cnn_candle.py From Benchmarks with MIT License | 5 votes |
def initialize_parameters(): mnist_common = mnist.MNIST(mnist.file_path, 'mnist_params.txt', 'keras', prog='mnist_cnn', desc='MNIST CNN example' ) # Initialize parameters gParameters = candle.finalize_parameters(mnist_common) csv_logger = CSVLogger('{}/params.log'.format(gParameters)) return gParameters
Example #4
Source File: mnist_dataset.py From pathnet-pytorch with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, prob): """load mnist dataset""" print("Loading MNIST dataset...") mndata = MNIST('./data/mnist/') mnist_train_images, mnist_train_labels = mndata.load_training() mnist_train_images = np.asarray(mnist_train_images) mnist_train_images = normalize(mnist_train_images) mnist_train_labels = np.asarray(mnist_train_labels) """divide datset by label""" print("Dividing dataset...") sorted_train_images = [] sorted_train_labels = [] for label in range(0,10): train_index = np.where(mnist_train_labels == label) sorted_train_images.append(mnist_train_images[train_index[0]]) sorted_train_labels.append(np.asarray([label] * len(train_index[0]))) """add salt_and_pepper noise""" print("Adding salt and pepper noise...") shape = 28 * 28 ##image shape of mnist self.train_images = [] self.train_labels = sorted_train_labels for images in sorted_train_images: noise_images = [] for image in images: noise_image = salt_and_pepper(image, prob, shape) noise_images.append(noise_image) self.train_images.append(noise_images)
Example #5
Source File: runner.py From pytorch with BSD 2-Clause "Simplified" License | 4 votes |
def run(): TorchModel = PyTorchHelpers.load_lua_class('torch_model.lua', 'TorchModel') torchModel = TorchModel(backend, 28, 10) mndata = MNIST('../../data/mnist') imagesList, labelsList = mndata.load_training() labels = np.array(labelsList, dtype=np.uint8) images = np.array(imagesList, dtype=np.float32) labels += 1 # since torch/lua labels are 1-based N = labels.shape[0] print('loaded mnist training data') if numTrain > 0: N = min(N, numTrain) print('numExamples N', N) numBatches = N // batchSize for epoch in range(numEpochs): epochLoss = 0 epochNumRight = 0 for b in range(numBatches): res = torchModel.trainBatch( learningRate, images[b * batchSize:(b+1) * batchSize], labels[b * batchSize:(b+1) * batchSize]) # print('res', res) numRight = res['numRight'] loss = res['loss'] epochNumRight += numRight epochLoss += loss print('epoch ' + str(epoch) + ' batch ' + str(b) + ' accuracy: ' + str(numRight * 100.0 / batchSize) + '%') print('epoch ' + str(epoch) + ' accuracy: ' + str(epochNumRight * 100.0 / N) + '%') print('finished training') print('loading test data...') imagesList, labelsList = mndata.load_testing() labels = np.array(labelsList, dtype=np.uint8) images = np.array(imagesList, dtype=np.float32) labels += 1 # since torch/lua labels are 1-based N = labels.shape[0] print('loaded mnist testing data') numBatches = N // batchSize epochLoss = 0 epochNumRight = 0 for b in range(numBatches): predictions = torchModel.predict(images[b * batchSize:(b+1) * batchSize]).asNumpyTensor().reshape(batchSize) labelsBatch = labels[b * batchSize:(b+1) * batchSize] numRight = (predictions == labelsBatch).sum() epochNumRight += numRight print('test results: accuracy: ' + str(epochNumRight * 100.0 / N) + '%')