Python tensorflow.python.layers.base.InputSpec() Examples
The following are 30
code examples of tensorflow.python.layers.base.InputSpec().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.layers.base
, or try the search function
.
Example #1
Source File: core.py From lambda-packs with MIT License | 6 votes |
def __init__(self, units, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, **kwargs): super(Dense, self).__init__(trainable=trainable, name=name, **kwargs) self.units = units self.activation = activation self.use_bias = use_bias self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.kernel_regularizer = kernel_regularizer self.bias_regularizer = bias_regularizer self.activity_regularizer = activity_regularizer self.input_spec = base.InputSpec(min_ndim=2)
Example #2
Source File: gdn.py From pcc_geo_cnn with MIT License | 6 votes |
def __init__(self, inverse=False, rectify=False, gamma_init=.1, data_format="channels_last", beta_parameterizer=_default_beta_param, gamma_parameterizer=_default_gamma_param, activity_regularizer=None, trainable=True, name=None, **kwargs): super(GDN, self).__init__(trainable=trainable, name=name, activity_regularizer=activity_regularizer, **kwargs) self.inverse = bool(inverse) self.rectify = bool(rectify) self._gamma_init = float(gamma_init) self.data_format = data_format self._beta_parameterizer = beta_parameterizer self._gamma_parameterizer = gamma_parameterizer self._channel_axis() # trigger ValueError early self.input_spec = base.InputSpec(min_ndim=2)
Example #3
Source File: gdn.py From pcc_geo_cnn with MIT License | 6 votes |
def build(self, input_shape): channel_axis = self._channel_axis() input_shape = tensor_shape.TensorShape(input_shape) num_channels = input_shape[channel_axis].value if num_channels is None: raise ValueError("The channel dimension of the inputs to `GDN` " "must be defined.") self._input_rank = input_shape.ndims self.input_spec = base.InputSpec(ndim=input_shape.ndims, axes={channel_axis: num_channels}) self.beta = self._beta_parameterizer( name="beta", shape=[num_channels], dtype=self.dtype, getter=self.add_variable, initializer=init_ops.Ones()) self.gamma = self._gamma_parameterizer( name="gamma", shape=[num_channels, num_channels], dtype=self.dtype, getter=self.add_variable, initializer=init_ops.Identity(gain=self._gamma_init)) self.built = True
Example #4
Source File: indRNN.py From Text-Classification with Apache License 2.0 | 6 votes |
def __init__(self, num_units, recurrent_min_abs=0, recurrent_max_abs=None, recurrent_kernel_initializer=None, input_kernel_initializer=None, activation=None, reuse=None, name=None): super(IndRNNCell, self).__init__(_reuse=reuse, name=name) self.input_spec = base_layer.InputSpec(ndim=2) # initialization self._num_units = num_units self._recurrent_min_abs = recurrent_min_abs self._recurrent_max_abs = recurrent_max_abs self._recurrent_recurrent_kernel_initializer = recurrent_kernel_initializer self._input_kernel_initializer = input_kernel_initializer self._activation = activation or nn_ops.relu
Example #5
Source File: basis_decomposition_dense.py From rgat with Apache License 2.0 | 6 votes |
def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) if input_shape[-1].value is None: raise ValueError('The last dimension of the inputs to `Dense` ' 'should be defined. Found `None`.') self.input_spec = base.InputSpec(min_ndim=2, axes={-1: input_shape[-1].value}) self.kernel = self._build_kernel(input_shape) if self.use_bias: self.bias = self.add_variable('bias', shape=[self.units], initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, dtype=self.dtype, trainable=True) else: self.bias = None self.built = True
Example #6
Source File: core.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) if input_shape[-1].value is None: raise ValueError('The last dimension of the inputs to `Dense` ' 'should be defined. Found `None`.') self.input_spec = base.InputSpec(min_ndim=2, axes={-1: input_shape[-1].value}) self.kernel = self.add_variable('kernel', shape=[input_shape[-1].value, self.units], initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, dtype=self.dtype, trainable=True) if self.use_bias: self.bias = self.add_variable('bias', shape=[self.units,], initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, dtype=self.dtype, trainable=True) else: self.bias = None self.built = True
Example #7
Source File: ind_rnn_cell.py From indrnn with Apache License 2.0 | 6 votes |
def __init__(self, num_units, recurrent_min_abs=0, recurrent_max_abs=None, recurrent_kernel_initializer=None, input_kernel_initializer=None, activation=None, reuse=None, name=None): super(IndRNNCell, self).__init__(_reuse=reuse, name=name) # Inputs must be 2-dimensional. self.input_spec = base_layer.InputSpec(ndim=2) self._num_units = num_units self._recurrent_min_abs = recurrent_min_abs self._recurrent_max_abs = recurrent_max_abs self._recurrent_initializer = recurrent_kernel_initializer self._input_initializer = input_kernel_initializer self._activation = activation or nn_ops.relu
Example #8
Source File: core.py From lambda-packs with MIT License | 6 votes |
def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) if input_shape[-1].value is None: raise ValueError('The last dimension of the inputs to `Dense` ' 'should be defined. Found `None`.') self.input_spec = base.InputSpec(min_ndim=2, axes={-1: input_shape[-1].value}) self.kernel = self.add_variable('kernel', shape=[input_shape[-1].value, self.units], initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, dtype=self.dtype, trainable=True) if self.use_bias: self.bias = self.add_variable('bias', shape=[self.units,], initializer=self.bias_initializer, regularizer=self.bias_regularizer, dtype=self.dtype, trainable=True) else: self.bias = None self.built = True
Example #9
Source File: pooling.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def __init__(self, pool_function, pool_size, strides, padding='valid', data_format='channels_last', name=None, **kwargs): super(_Pooling2D, self).__init__(name=name, **kwargs) self.pool_function = pool_function self.pool_size = utils.normalize_tuple(pool_size, 2, 'pool_size') self.strides = utils.normalize_tuple(strides, 2, 'strides') self.padding = utils.normalize_padding(padding) self.data_format = utils.normalize_data_format(data_format) self.input_spec = base.InputSpec(ndim=4)
Example #10
Source File: pooling.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def __init__(self, pool_function, pool_size, strides, padding='valid', data_format='channels_last', name=None, **kwargs): super(_Pooling1D, self).__init__(name=name, **kwargs) self.pool_function = pool_function self.pool_size = utils.normalize_tuple(pool_size, 1, 'pool_size') self.strides = utils.normalize_tuple(strides, 1, 'strides') self.padding = utils.normalize_padding(padding) self.data_format = utils.normalize_data_format(data_format) self.input_spec = base.InputSpec(ndim=3)
Example #11
Source File: core.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def __init__(self, **kwargs): super(Flatten, self).__init__(**kwargs) self.input_spec = base.InputSpec(min_ndim=2)
Example #12
Source File: convolutional.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def __init__(self, rank, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(_Conv, self).__init__(trainable=trainable, name=name, activity_regularizer=activity_regularizer, **kwargs) self.rank = rank self.filters = filters self.kernel_size = utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = utils.normalize_tuple(strides, rank, 'strides') self.padding = utils.normalize_padding(padding) self.data_format = utils.normalize_data_format(data_format) self.dilation_rate = utils.normalize_tuple( dilation_rate, rank, 'dilation_rate') self.activation = activation self.use_bias = use_bias self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.kernel_regularizer = kernel_regularizer self.bias_regularizer = bias_regularizer self.kernel_constraint = kernel_constraint self.bias_constraint = bias_constraint self.input_spec = base.InputSpec(ndim=self.rank + 2)
Example #13
Source File: convolutional.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis].value is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis].value kernel_shape = self.kernel_size + (input_dim, self.filters) self.kernel = self.add_variable(name='kernel', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_variable(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype) else: self.bias = None self.input_spec = base.InputSpec(ndim=self.rank + 2, axes={channel_axis: input_dim}) self._convolution_op = nn_ops.Convolution( input_shape, filter_shape=self.kernel.get_shape(), dilation_rate=self.dilation_rate, strides=self.strides, padding=self.padding.upper(), data_format=utils.convert_data_format(self.data_format, self.rank + 2)) self.built = True
Example #14
Source File: core.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def __init__(self, units, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(Dense, self).__init__(trainable=trainable, name=name, activity_regularizer=activity_regularizer, **kwargs) self.units = units self.activation = activation self.use_bias = use_bias self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.kernel_regularizer = kernel_regularizer self.bias_regularizer = bias_regularizer self.kernel_constraint = kernel_constraint self.bias_constraint = bias_constraint self.input_spec = base.InputSpec(min_ndim=2)
Example #15
Source File: convolutional.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs): super(Conv2DTranspose, self).__init__( filters, kernel_size, strides=strides, padding=padding, data_format=data_format, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, **kwargs) self.input_spec = base.InputSpec(ndim=4)
Example #16
Source File: separable_conv2d.py From RoboND-DeepLearning-Project with MIT License | 5 votes |
def __init__(self, size=(2, 2), data_format=None, **kwargs): super(BilinearUpSampling2D, self).__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) self.size = conv_utils.normalize_tuple(size, 2, 'size') self.input_spec = InputSpec(ndim=4)
Example #17
Source File: convolutional.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def build(self, input_shape): if len(input_shape) != 4: raise ValueError('Inputs should have rank ' + str(4) + 'Received input shape:', str(input_shape)) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis] self.input_spec = base.InputSpec(ndim=4, axes={channel_axis: input_dim}) kernel_shape = self.kernel_size + (self.filters, input_dim) self.kernel = self.add_variable(name='kernel', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_variable(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype) else: self.bias = None self.built = True
Example #18
Source File: signal_conv.py From pcc_geo_cnn with MIT License | 5 votes |
def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) channel_axis = self._channel_axis input_channels = input_shape[channel_axis].value if input_channels is None: raise ValueError("The channel dimension of the inputs must be defined.") kernel_shape = self.kernel_support + (input_channels, self.filters) if self.channel_separable: output_channels = self.filters * input_channels else: output_channels = self.filters if self.kernel_parameterizer is None: getter = self.add_variable else: getter = functools.partial( self.kernel_parameterizer, getter=self.add_variable) self._kernel = getter( name="kernel", shape=kernel_shape, dtype=self.dtype, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer) if self.bias_parameterizer is None: getter = self.add_variable else: getter = functools.partial( self.bias_parameterizer, getter=self.add_variable) self._bias = None if not self.use_bias else getter( name="bias", shape=(output_channels,), dtype=self.dtype, initializer=self.bias_initializer, regularizer=self.bias_regularizer) self.input_spec = base.InputSpec( ndim=self._rank + 2, axes={channel_axis: input_channels}) super(_SignalConv, self).build(input_shape)
Example #19
Source File: LookupConvolution2d.py From tf-lcnn with GNU General Public License v3.0 | 5 votes |
def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis].value is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis].value kernel_shape = self.kernel_size + (input_dim, self.filters) # dense kernel self.kernel_pre = self.add_variable(name='kernel_pre', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, trainable=True, dtype=self.dtype) conv_th = tf.ones_like(self.kernel_pre) * self.sparse_th conv_zero = tf.zeros_like(self.kernel_pre) cond = tf.less(tf.abs(self.kernel_pre), conv_th) self.kernel = tf.where(cond, conv_zero, self.kernel_pre, name='kernel') if self.use_bias: self.bias = self.add_variable(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, trainable=True, dtype=self.dtype) else: self.bias = None self.input_spec = base.InputSpec(ndim=self.rank + 2, axes={channel_axis: input_dim}) self.built = True
Example #20
Source File: block_lstm.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def __init__(self, num_units, forget_bias=1.0, cell_clip=None, use_peephole=False, reuse=None, dtype=None, name="lstm_cell"): """Initialize the LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). cell_clip: clip the cell to this value. Default is no cell clipping. use_peephole: Whether to use peephole connections or not. reuse: (optional) boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. dtype: the dtype of variables of this layer. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. By default this is "lstm_cell", for variable-name compatibility with `tf.nn.rnn_cell.LSTMCell`. """ super(LSTMBlockFusedCell, self).__init__( _reuse=reuse, name=name, dtype=dtype) self._num_units = num_units self._forget_bias = forget_bias self._cell_clip = cell_clip if cell_clip is not None else -1 self._use_peephole = use_peephole # Inputs must be 3-dimensional. self.input_spec = base_layer.InputSpec(ndim=3)
Example #21
Source File: block_lstm.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def __init__(self, num_units, forget_bias=1.0, cell_clip=None, use_peephole=False, reuse=None, dtype=None, name="lstm_cell"): """Initialize the LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). cell_clip: clip the cell to this value. Default is no cell clipping. use_peephole: Whether to use peephole connections or not. reuse: (optional) boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. dtype: the dtype of variables of this layer. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. By default this is "lstm_cell", for variable-name compatibility with `tf.nn.rnn_cell.LSTMCell`. """ super(LSTMBlockFusedCell, self).__init__( _reuse=reuse, name=name, dtype=dtype) self._num_units = num_units self._forget_bias = forget_bias self._cell_clip = cell_clip if cell_clip is not None else -1 self._use_peephole = use_peephole # Inputs must be 3-dimensional. self.input_spec = base_layer.InputSpec(ndim=3)
Example #22
Source File: block_lstm.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def __init__(self, num_units, forget_bias=1.0, cell_clip=None, use_peephole=False, reuse=None, dtype=None, name="lstm_cell"): """Initialize the LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). cell_clip: clip the cell to this value. Default is no cell clipping. use_peephole: Whether to use peephole connections or not. reuse: (optional) boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. dtype: the dtype of variables of this layer. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. By default this is "lstm_cell", for variable-name compatibility with `tf.nn.rnn_cell.LSTMCell`. """ super(LSTMBlockFusedCell, self).__init__( _reuse=reuse, name=name, dtype=dtype) self._num_units = num_units self._forget_bias = forget_bias self._cell_clip = cell_clip if cell_clip is not None else -1 self._use_peephole = use_peephole # Inputs must be 3-dimensional. self.input_spec = base_layer.InputSpec(ndim=3)
Example #23
Source File: convolutional.py From lambda-packs with MIT License | 5 votes |
def build(self, input_shape): if len(input_shape) != 4: raise ValueError('Inputs should have rank ' + str(4) + 'Received input shape:', str(input_shape)) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis] self.input_spec = base.InputSpec(ndim=4, axes={channel_axis: input_dim}) kernel_shape = self.kernel_size + (self.filters, input_dim) self.kernel = self.add_variable(name='kernel', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_variable(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, trainable=True, dtype=self.dtype) else: self.bias = None self.built = True
Example #24
Source File: convolutional.py From lambda-packs with MIT License | 5 votes |
def __init__(self, filters, kernel_size, strides=(1, 1), padding='valid', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, trainable=True, name=None, **kwargs): super(Conv2DTranspose, self).__init__( filters, kernel_size, strides=strides, padding=padding, data_format=data_format, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, trainable=trainable, name=name, **kwargs) self.input_spec = base.InputSpec(ndim=4)
Example #25
Source File: convolutional.py From lambda-packs with MIT License | 5 votes |
def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 if input_shape[channel_axis].value is None: raise ValueError('The channel dimension of the inputs ' 'should be defined. Found `None`.') input_dim = input_shape[channel_axis].value kernel_shape = self.kernel_size + (input_dim, self.filters) self.kernel = self.add_variable(name='kernel', shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_variable(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, trainable=True, dtype=self.dtype) else: self.bias = None self.input_spec = base.InputSpec(ndim=self.rank + 2, axes={channel_axis: input_dim}) self.built = True
Example #26
Source File: pooling.py From lambda-packs with MIT License | 5 votes |
def __init__(self, pool_function, pool_size, strides, padding='valid', data_format='channels_last', name=None, **kwargs): super(_Pooling3D, self).__init__(name=name, **kwargs) self.pool_function = pool_function self.pool_size = utils.normalize_tuple(pool_size, 3, 'pool_size') self.strides = utils.normalize_tuple(strides, 3, 'strides') self.padding = utils.normalize_padding(padding) self.data_format = utils.normalize_data_format(data_format) self.input_spec = base.InputSpec(ndim=5)
Example #27
Source File: pooling.py From lambda-packs with MIT License | 5 votes |
def __init__(self, pool_function, pool_size, strides, padding='valid', data_format='channels_last', name=None, **kwargs): super(_Pooling2D, self).__init__(name=name, **kwargs) self.pool_function = pool_function self.pool_size = utils.normalize_tuple(pool_size, 2, 'pool_size') self.strides = utils.normalize_tuple(strides, 2, 'strides') self.padding = utils.normalize_padding(padding) self.data_format = utils.normalize_data_format(data_format) self.input_spec = base.InputSpec(ndim=4)
Example #28
Source File: pooling.py From lambda-packs with MIT License | 5 votes |
def __init__(self, pool_function, pool_size, strides, padding='valid', data_format='channels_last', name=None, **kwargs): super(_Pooling1D, self).__init__(name=name, **kwargs) self.pool_function = pool_function self.pool_size = utils.normalize_tuple(pool_size, 1, 'pool_size') self.strides = utils.normalize_tuple(strides, 1, 'strides') self.padding = utils.normalize_padding(padding) self.data_format = utils.normalize_data_format(data_format) self.input_spec = base.InputSpec(ndim=3)
Example #29
Source File: signal_conv.py From pcc_geo_cnn with MIT License | 4 votes |
def __init__(self, rank, filters, kernel_support, corr=False, strides_down=1, strides_up=1, padding="valid", extra_pad_end=True, channel_separable=False, data_format="channels_last", activation=None, use_bias=False, kernel_initializer=init_ops.VarianceScaling(), bias_initializer=init_ops.Zeros(), kernel_regularizer=None, bias_regularizer=None, kernel_parameterizer=parameterizers.RDFTParameterizer(), bias_parameterizer=None, **kwargs): super(_SignalConv, self).__init__(**kwargs) self._rank = int(rank) self._filters = int(filters) self._kernel_support = utils.normalize_tuple( kernel_support, self._rank, "kernel_support") self._corr = bool(corr) self._strides_down = utils.normalize_tuple( strides_down, self._rank, "strides_down") self._strides_up = utils.normalize_tuple( strides_up, self._rank, "strides_up") self._padding = str(padding).lower() try: self._pad_mode = { "valid": None, "same_zeros": "CONSTANT", "same_reflect": "REFLECT", }[self.padding] except KeyError: raise ValueError("Unsupported padding mode: '{}'".format(padding)) self._extra_pad_end = bool(extra_pad_end) self._channel_separable = bool(channel_separable) self._data_format = utils.normalize_data_format(data_format) self._activation = activation self._use_bias = bool(use_bias) self._kernel_initializer = kernel_initializer self._bias_initializer = bias_initializer self._kernel_regularizer = kernel_regularizer self._bias_regularizer = bias_regularizer self._kernel_parameterizer = kernel_parameterizer self._bias_parameterizer = bias_parameterizer self.input_spec = base.InputSpec(ndim=self._rank + 2)
Example #30
Source File: separable_conv2d.py From RoboND-DeepLearning-Project with MIT License | 4 votes |
def build(self, input_shape): if len(input_shape) < 4: raise ValueError('Inputs to `SeparableConv2D` should have rank 4. ' 'Received input shape:', str(input_shape)) if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = 3 if input_shape[channel_axis] is None: raise ValueError('The channel dimension of the inputs to ' '`SeparableConv2D` ' 'should be defined. Found `None`.') input_dim = int(input_shape[channel_axis]) self.input_spec = base.InputSpec(ndim=4, axes={channel_axis: input_dim}) depthwise_kernel_shape = (self.kernel_size[0], self.kernel_size[1], input_dim, self.depth_multiplier) pointwise_kernel_shape = (1, 1, self.depth_multiplier * input_dim, self.filters) self.depthwise_kernel = self.add_variable( name='depthwise_kernel', shape=depthwise_kernel_shape, initializer=self.depthwise_initializer, regularizer=self.depthwise_regularizer, trainable=True, dtype=self.dtype) self.pointwise_kernel = self.add_variable( name='pointwise_kernel', shape=pointwise_kernel_shape, initializer=self.pointwise_initializer, regularizer=self.pointwise_regularizer, trainable=True, dtype=self.dtype) if self.use_bias: self.bias = self.add_variable(name='bias', shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, trainable=True, dtype=self.dtype) else: self.bias = None self.built = True